131 research outputs found

    Editorial: Special Issue on Pandemic and Libraries

    Get PDF
    Editorial: Special Issue on Pandemic and Librarie

    Editorial: Celebrating Six-Year Anniversary and Launching the Thirteenth Issue

    Get PDF

    Research on temperature distribution characteristics of oil‐immersed power transformers based on fluid network decoupling

    Get PDF
    Due to the complex structure and large size of large‐capacity oil‐immersed power transformers, it is difficult to predict the winding temperature distribution directly by numerical analysis. A 180 MVA, 220 kV oil‐immersed self‐cooling power transformer is used as the research object. The authors decouple the internal fluid domain of the power transformer into four regions: high voltage windings, medium voltage windings, low voltage windings, and radiators through fluid networks and establish the 3D fluid‐temperature field numerical analysis model of the four regions, respectively. The results of the fluid network model are used as the inlet boundary conditions for the 3D fluid‐temperature numerical analysis model. In turn, the fluid resistance of the fluid network model is corrected according to the results of the 3D fluid‐temperature field numerical analysis model. The prediction of the temperature distribution of windings is realised by the coupling calculation between the fluid network model and the 3D fluid‐temperature field numerical analysis model. Based on this, the effect of the loading method of the heat source is also investigated using the proposed method. The hotspot temperatures of the high‐voltage, medium‐voltage, and low‐voltage windings are 89.43, 86.33, and 80.96°C, respectively. Finally, an experimental platform is built to verify the results. The maximum relative error between calculated and measured values is 4.42%, which meets the engineering accuracy requirement

    Trichoderma reesei FS10-C enhances phytoremediation of Cd-contaminated soil by Sedum plumbizincicola and associated soil microbial activities

    Get PDF
    This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by Sedum plumbizincicola as well as soil fertility. After characterizing the Cd tolerance of T. reesei FS10-C, a pot experiment was carried out to investigate the plant growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents with/without T. reesei FS10-C. The soil samples in pots were analyzed for pH, available phosphorus (P), microbial biomass C, enzyme activities, microbial community functional diversity and Trichoderma colonization ability. The results indicated that FS10-C possessed high Cd resistance up to 300 mg L-1. All inoculation agents enhanced the biomass of plant shoots by 6-53% fresh weight and 16-61% dry weight as well as Cd uptake in plant shoots by 10-53% compared with the control. In addition, soil biomass C, enzyme activities and microbial community evenness were all increased to varying degrees by all inoculation agents, indicating that soil microbial biomass and activities were both enhanced. It was also found that the two inoculation agents accompanied by FS10-C were better compared with the inoculation agents without FS10-C on all accounts, from which it could be concluded that T. reesei FS10-C was effective in improving Cd phytoremediation of S. plumbizincicola and soil fertility. Furthermore, among all the inoculation agents, solid fermentation powder of FS10-C demonstrated the greatest capacity to enhance plant growth, Cd uptake, nutrient release, and microbial biomass and activities, as indicated by its superior ability to colonize Trichoderma. Thus, we could also conclude that solid fermentation powder of FS10-C was a good candidate for use as an inoculation agent for T. reesei FS10-C to improve the phytoremediation of Cd-contaminated soil and soil fertility

    Effect of Mg and C contents in MgCNi3, and structure and superconductivity of MgCNi3-xCox

    Full text link
    The effect of Mg and C contents on TC in MgCNi3, and structure and superconductivity of MgCNi3-xCox were studied. It is found that the excess of Mg and C in initial material mixture is favorable to improve TC and obtain single-phase samples. For preparing MgCNi3 superconductor, the optimum composition of starting materials is MgC1.45Ni3 with 20wt.% excess of Mg of the stoichiometric composition. In MgCNi3-xCox system, a continuous solid solution is formed, lattice parameter decreases slightly and TC decreases obviously with increasing x. A suppression of superconductivity is observed due to the substitution of Co (Mn) for Ni. The suppression effect is smaller for the substitution of Co than that of Mn.Comment: 13 pages pd

    Retrieving Soil and Vegetation Temperatures From Dual-Angle and Multipixel Satellite Observations

    Get PDF
    Land surface component temperatures (LSCTs), i.e., the temperatures of soil and vegetation, are important parameters in many applications, such as estimating evapotranspiration and monitoring droughts. However, the multiangle algorithm is affected due to different spatial resolution between nadir and oblique views. Therefore, we propose a combined retrieval algorithm that uses dual-angle and multipixel observations together. The sea and land surface temperature radiometer onboard ESA\u27s Sentinel-3 satellite allows for quasi-synchronous dual-angle observations, from which LSCTs can be retrieved using dual-angle and multipixel algorithms. The better performance of the combined algorithm is demonstrated using a sensitivity analysis based on a synthetic dataset. The spatial errors in the oblique view due to different spatial resolution can reach 4.5 K and have a large effect on the multiangle algorithm. The introduction of multipixel information in a window can reduce the effect of such spatial errors, and the retrieval results of LSCTs can be further improved by using multiangle information for a pixel. In the validation, the proposed combined algorithm performed better, with LSCT root mean squared errors of 3.09 K and 1.91 K for soil and vegetation at a grass site, respectively, and corresponding values of 3.71 K and 3.42 K at a sparse forest site, respectively. Considering that the temperature differences between components can reach 20 K, the results confirm that, in addition to a pixel-average LST, the combined retrieval algorithm can provide information on LSCTs. This article demonstrates the potential of utilizing additional information sources for better LSCT results, which makes the presented combined strategy a promising option for deriving large-scale LSCT products
    • 

    corecore