49 research outputs found

    Low-Energy Electron-Impact Ionization of Argon: Three-Dimensional Cross Section

    Get PDF
    Low-energy (E 0 = 70.8 eV) electron-impact single ionization of a 3p electron in argon has been studied experimentally and theoretically. Our measurements are performed using the so-called reaction microscope technique, which can cover nearly a full 4π solid angle for the emission of a secondary electron with energy below 15 eV and projectile scattering angles ranging from -8° to -30°. The measured cross sections are internormalized across all scattering angles and ejected energies. Several theoretical models were employed to predict the triple-differential cross sections (TDCSs). They include a standard distorted-wave Born approximation (DWBA), a modified version to account for the effects of postcollision interaction (DWBA-PCI), a hybrid second-order distorted-wave plus R-matrix (DWB2-RM) method, and the recently developed B-spline R-matrix with pseudostates (BSR) approach. The relative angular dependence of the BSR cross sections is generally found to be in reasonable agreement with experiment, and the importance of the PCI effect is clearly visible in this low-energy electron-impact ionization process. However, there remain significant differences in the magnitude of the calculated and the measured TDCSs

    Kinematically Complete Study of Low-Energy Electron-Impact Ionization of Argon: Internormalized Cross Sections in Three-Dimensional Kinematics

    Get PDF
    As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne(2p) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015)PLRAAN1050-294710.1103/PhysRevA.91.032707] to Ar(3p) ionization at the relatively low incident energy of E0 = 66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20⁰ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B-spline R-matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne(2p), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data

    Electron-Impact Ionization of H₂O at Low Projectile Energy: Internormalized Triple-Differential Cross Sections in Three-Dimensional Kinematics

    Get PDF
    We report a combined experimental and theoretical study of the electron-impact ionization of water (H2O) at the relatively low incident energy of E0=81eV in which either the 1b1 or 3a1 orbitals are ionized leading to the stable H2O cation. The experimental data were measured by using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission over a range of ejection energies. We present experimental data for the scattering angles of 6⁰ and 10⁰ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 5 and 10 eV. The experimental triple-differential cross sections are internormalized across the measured scattering angles and ejected energies. The experimental data are compared with predictions from two molecular three-body distorted-wave approaches: one applying the orientation-averaged molecular orbital (OAMO) approximation and one using a proper average (PA) over orientation-dependent cross sections. The PA calculations are in better agreement with the experimental data than the OAMO calculations for both the angular dependence and the relative magnitude of the observed cross-section structures

    Fivefold Differential Cross Sections for Ground-state Ionization of Aligned H₂ by Electron Impact

    Get PDF
    We discuss the ionization of aligned hydrogen molecules into their ionic ground state by 200 eV electrons. Using a reaction microscope, the complete electron scattering kinematics is imaged over a large solid angle. Simultaneously, the molecular alignment is derived from postcollision dissociation of the residual ion. It is found that the ionization cross section is maximized for small angles between the internuclear axis and the momentum transfer. Fivefold differential cross sections (5DCSs) reveal subtle differences in the scattering process for the distinct alignments. We compare our observations with theoretical 5DCSs obtained with an adapted molecular three-body distorted wave model that reproduces most of the results, although discrepancies remain

    Measuring charge distribution of molecular cations by atomic Coulomb probe microscope

    Full text link
    Imaging the charge distributions and structures of molecules and clusters will promote the understanding of the dynamics of the quantum system. Here, we report a method by using an Ar atom as a tip to probe the charge distributions of benzene (Bz) cations in gas phase. Remarkably, the measured charge distributions of Bz cation (QH =0.204,QC=-0.037)and dication (QH =0.248,QC=0.0853)agree well with the calculated Mulliken distributions,and the structures of Bz dimer is reconstructed by using the measured charge distributions. The structures of two Bz dimer isomers (T-shaped and PD isomers) can be resolved from the measured inter-molecular potential V(R) between two Bz ions, and the structures of Bz dimer agree well with the theoretical predictions.Comment: 7 pages, 3 Figure

    Kinematically Complete Study of Low-Energy Electron-Impact Ionization of Neon: Internormalized Cross Sections in Three-Dimensional Kinematics

    Get PDF
    Low-energy (E0 0=65eV) electron-impact single ionization of Ne (2p) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8.5⁰ to 20.0⁰. The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between the experiment and predictions from the 3DW and BSR models, for both the angular dependence and the relative magnitude of the cross sections in the full three-dimensional parameter space. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process

    Low-energy (E₀ = 65 eV) Electron-Impact Ionization of Neon: Internormalized Triple-Differentical Cross Sections in 3D Kinematics

    Get PDF
    We present a combined experimental and theoretical study on the low-energy (E0 = 65 eV) electron- impact ionization of neon. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach (DWB2-RM), the distorted-wave Born approximation with inclusion of post-collision interaction (DWBA-PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between experiment and the 3DW and BSR theories. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process

    Coincidence Angular Correlation in Electron Impact Single or Double Ionisation of Atoms and Molecules

    Get PDF
    Experimental results obtained with our multi-parameter multi-coincidence spectrometer are presented for the (e,3e) double ionisation of Ar and (e,2e) single ionisation of small molecules. The (e,3e) measurements are discussed in terms of competition between the two double ionisation processes present under the chosen kinematics, and qualitative conclusions are given. The results for the ionisation of H2 and the outer orbital of N2 are compared with the predictions of the most elaborate available theoretical models for description of the molecular ionisation process. Overall reasonable agreement is observed and tentative interpretations for the discrepancies are discussed

    Dynamic Effects in Electron Momentum Spectroscopy of Sulfur Hexafluoride

    Get PDF
    Electron momentum spectroscopy (EMS) results are presented for the sulfur hexafluoride (SF6) molecule using a high-resolution binary (e, 2e) spectrometer at incident energies (Ei) of 600, 1200, and 2400 eV plus the binding energy. The valence orbital momentum profiles were measured with a binding energy resolution of 0.68 eV and angular resolutions of Δθ = ±0.6⁰, ΔΦ = ±0.85⁰. Whereas the two higher incident energies are in the range where normally EMS measurements do not exhibit an impact-energy dependence, the current experimental data display a dynamic dependence on the impact energies. The measured momentum profiles are compared with predictions from a plane-wave impulse approximation (PWIA) calculation using molecular orbitals obtained from a density-functional-theory quantum-chemistry calculation. The PWIA calculations are in fairly good agreement with experiment only for 2400 eV impact energy, particularly for the summed 1t2u and 5t1u orbitals. We have also compared the experimental results for the 5a1g state with the molecular three-body distorted-wave (M3DW) approach using the orientation-averaged molecular orbital approximation. Unlike the PWIA, the M3DW results are in very good agreement with the experimental data at all three measured incident energies for small momenta, which indicates that dynamical distortion effects are important for this molecule
    corecore