3,037 research outputs found

    Electromagnetically controlled multiferroic thermal diode

    Get PDF
    We propose an electromagnetically tunable thermal diode based on a two phase multiferroics composite. Analytical and full numerical calculations for prototypical heterojunction composed of Iron on Barium titanate in the tetragonal phase demonstrate a strong heat rectification effect that can be controlled externally by a moderate electric field. This finding is of an importance for thermally based information processing and sensing and can also be integrated in (spin)electronic circuits for heat management and recycling.Comment: Accepted in Phys. Rev.

    Quantum phase transition in easy-axis antiferromagnetic Heisenberg spin-1 chain

    Full text link
    The fidelity and entropy in an easy-axis antiferromagnetic Heisenberg spin-1 chain are studied numerically. By using the method of density-matrix renormalization group, the effects of anisotropy on fidelity and entanglement entropy are investigated. Their relations with quantum phase transition are analyzed. It is found that the quantum phase transition from the Haldane spin liquid to N\'eel spin solid can be well characterized by the fidelity. The phase transition can be hardly detected by the entropy but it can be successfully detected by the first deviation of the entropy.Comment: 3 figure

    How to project a bipartite network?

    Get PDF
    The one-mode projecting is extensively used to compress the bipartite networks. Since the one-mode projection is always less informative than the bipartite representation, a proper weighting method is required to better retain the original information. In this article, inspired by the network-based resource-allocation dynamics, we raise a weighting method, which can be directly applied in extracting the hidden information of networks, with remarkably better performance than the widely used global ranking method as well as collaborative filtering. This work not only provides a creditable method in compressing bipartite networks, but also highlights a possible way for the better solution of a long-standing challenge in modern information science: How to do personal recommendation?Comment: 7 pages, 4 figure

    Quasi-2D Optomechanical Crystal Cavity for Quantum Optomechanics

    Get PDF
    We present the design and characterization of a quasi-two-dimensional optomechanical crystal cavity. At a refrigerated temperature of 10 mK, an intrinsic mechanical quality factor of 1.2 billion is observed and an effective quantum cooperativity greater than unity is realized under steady-state optical pumping

    Phononics: Manipulating heat flow with electronic analogs and beyond

    Full text link
    The form of energy termed heat that typically derives from lattice vibrations, i.e. the phonons, is usually considered as waste energy and, moreover, deleterious to information processing. However, with this colloquium, we attempt to rebut this common view: By use of tailored models we demonstrate that phonons can be manipulated like electrons and photons can, thus enabling controlled heat transport. Moreover, we explain that phonons can be put to beneficial use to carry and process information. In a first part we present ways to control heat transport and how to process information for physical systems which are driven by a temperature bias. Particularly, we put forward the toolkit of familiar electronic analogs for exercising phononics; i.e. phononic devices which act as thermal diodes, thermal transistors, thermal logic gates and thermal memories, etc.. These concepts are then put to work to transport, control and rectify heat in physical realistic nanosystems by devising practical designs of hybrid nanostructures that permit the operation of functional phononic devices and, as well, report first experimental realizations. Next, we discuss yet richer possibilities to manipulate heat flow by use of time varying thermal bath temperatures or various other external fields. These give rise to a plenty of intriguing phononic nonequilibrium phenomena as for example the directed shuttling of heat, a geometrical phase induced heat pumping, or the phonon Hall effect, that all may find its way into operation with electronic analogs.Comment: 24 pages, 16 figures, modified title and revised, accepted for publication in Rev. Mod. Phy

    Controlling complex networks: How much energy is needed?

    Full text link
    The outstanding problem of controlling complex networks is relevant to many areas of science and engineering, and has the potential to generate technological breakthroughs as well. We address the physically important issue of the energy required for achieving control by deriving and validating scaling laws for the lower and upper energy bounds. These bounds represent a reasonable estimate of the energy cost associated with control, and provide a step forward from the current research on controllability toward ultimate control of complex networked dynamical systems.Comment: 4 pages paper + 5 pages supplement. accepted for publication in Physical Review Letters; http://link.aps.org/doi/10.1103/PhysRevLett.108.21870

    Duality and fluctuation relations for statistics of currents on cyclic graphs

    Full text link
    We consider stochastic motion of a particle on a cyclic graph with arbitrarily periodic time dependent kinetic rates. We demonstrate duality relations for statistics of currents in this model and in its continuous version of a diffusion in one dimension. Our duality relations are valid beyond detailed balance constraints and lead to exact expressions that relate statistics of currents induced by dual driving protocols. We also show that previously known no-pumping theorems and some of the fluctuation relations, when they are applied to cyclic graphs or to one dimensional diffusion, are special consequences of our duality.Comment: 2 figure, 6 pages (In twocolumn). Accepted by JSTA

    Out-of-Distribution Detection and Selective Generation for Conditional Language Models

    Full text link
    Machine learning algorithms typically assume independent and identically distributed samples in training and at test time. Much work has shown that high-performing ML classifiers can degrade significantly and provide overly-confident, wrong classification predictions, particularly for out-of-distribution (OOD) inputs. Conditional language models (CLMs) are predominantly trained to classify the next token in an output sequence, and may suffer even worse degradation on OOD inputs as the prediction is done auto-regressively over many steps. Furthermore, the space of potential low-quality outputs is larger as arbitrary text can be generated and it is important to know when to trust the generated output. We present a highly accurate and lightweight OOD detection method for CLMs, and demonstrate its effectiveness on abstractive summarization and translation. We also show how our method can be used under the common and realistic setting of distribution shift for selective generation (analogous to selective prediction for classification) of high-quality outputs, while automatically abstaining from low-quality ones, enabling safer deployment of generative language models

    Equation of State for Neutralino Star as a Form of Cold Dark Matter

    Full text link
    In order to study the structure of neutralino star and dark galaxy, we consider dynamical interactions due to boson-exchange in the neutralino matter. Taking into account interactions of neutralinos with bosons, we derive the equation of state (EOS) of neutralino stars in terms of the relativistic mean field approach. Then we apply the resulting EOS to investigate properties of the neutralino star such as its density profile and mass limit. For example, if the neutralino mass is around 1 TeV, the Oppenheimer mass limit of the neutralino star is obtained as 6.06×107M6.06\times 10^{-7}M_\odot, and the corresponding radius is about 7.8 mm. Actually, due to an increasing annihilation rate as indicated by our calculation, this dense state can never be realized in practice. Our results also show that the low density neutralino star may be a possible aggregation of the cold dark matter.Comment: 5 pages, 5 figures; v2: matches published versio

    Friedmann cosmology with a generalized equation of state and bulk viscosity

    Full text link
    The universe media is considered as a non-perfect fluid with bulk viscosity and described by a more general equation of state. We assume the bulk viscosity is a linear combination of the two terms: one is constant, and the other is proportional to the scalar expansion θ=3a˙/a\theta=3\dot{a}/a. The equation of state is described as p=(γ1)ρ+p0p=(\gamma-1)\rho+p_0, where p0p_0 is a parameter. This model can be used to explain the dark energy dominated universe. Different choices of the parameters may lead to three kinds of fates of the cosmological evolution: no future singularity, big rip, or Type III singularity of Ref. [S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D \textbf{71}, 063004 (2005)].Comment: 5 pages and 4 fig
    corecore