15,070 research outputs found

    Oxidation Behavior of a Pd_(43)Cu_(27)Ni_(10)P_(20) Bulk Metallic Glass and Foam in Dry Air

    Get PDF
    The oxidation behavior of both Pd_(43)Cu_(27)Ni_(10)P_(20) bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 °C) to 623 K (350 °C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T < 523 K (250 °C), revealing the alloy’s favorable oxidation resistance in this temperature range. In addition, the oxidation kinetics at T ≥ 523 K (250 °C) followed a parabolic-rate law, and the parabolic-rate constants (k_p values) generally increased with temperature. It was found that the oxidation k_p values of the Pd4-AF are slightly lower than those of the Pd4-BMG, indicating that the porous structure contributes to improving the overall oxidation resistance. The scale formed on the alloys was composed exclusively of CuO at T ≥ 548 K (275 °C), whose thickness gradually increased with increasing temperature. In addition, the amorphous structure remained unchanged at T ≤ 548 K (275 °C), while a triplex-phase structure developed after the oxidation at higher temperatures, consisting of Pd_2Ni_2P, Cu_3P, and Pd_3P

    Neutrino spin oscillations in gravitational fields

    Full text link
    We study neutrino spin oscillations in black hole backgrounds. In the case of a charged black hole, the maximum frequency of oscillations is a monotonically increasing function of the charge. For a rotating black hole, the maximum frequency decreases with increasing the angular momentum. In both cases, the frequency of spin oscillations decreases as the distance from the black hole grows. As a phenomenological application of our results, we study simple bipolar neutrino system which is an interesting example of collective neutrino oscillations. We show that the precession frequency of the flavor pendulum as a function of the neutrino number density will be higher for a charged/non-rotating black hole compared with a neutral/rotating black hole respectively.Comment: Replaced with the version accepted for publication in Gravitation and Cosmology, Springer. 10 pages. 4 figure

    Full one-loop QCD and electroweak corrections to sfermion pair production in γγ\gamma \gamma collisions

    Full text link
    We have calculated the full one-loop electroweak (EW) and QCD corrections to the third generation scalar-fermion pair production processes e+eγγfi~fi~ˉ(f=t,b,τ)e^+e^- \to \gamma \gamma \to \tilde{f_i}\bar{\tilde{f_i}} (f=t,b,\tau) at an electron-positron linear collider(LC) in the minimal supersymmetric standard model (MSSM). We analyze the dependence of the radiative corrections on the parameters such as the colliding energy s^\sqrt{\hat s} and the SUSY fundamental parameters AfA_f, tanβ\tan \beta, μ\mu, MSUSYM_{SUSY} and so forth. The numerical results show that the EW corrections to the squark-, stau-pair production processes and QCD corrections to the squark-pair production processes give substantial contributions in some parameter space. The EW relative corrections to squark-pair production processes can be comparable with QCD corrections at high energies. Therefore, these EW and QCD corrections cannot be neglected in precise measurement of sfermion pair productions via γγ\gamma\gamma collision at future linear colliders.Comment: to be appeared in Phys. Rev.

    Electronic Structure of New AFFeAs Prototype of Iron Arsenide Superconductors

    Full text link
    This work is provoked by recent discovery of new class prototype systems AFFeAs (A=Sr,Ca) of novel layered ironpnictide High-Tc superconductors (Tc=36K). Here we report ab initio LDA results for electronic structure of the AFFeAs systems. We provide detailed comparison between electronic properties of both new systems and reference LaOFeAs (La111) compound. In the vicinity of the Fermi level all three systems have essentially the same band dispersions. However for iron fluoride systems F(2p) states were found to be separated in energy from As(4p) ones in contrast to La111, where O(2p) states strongly overlaps with As(4p). Thus it should be more plausible to include only Fe(3d) and As(4p) orbitals into a realistic noninteracting model than for La111. Moreover Sr substitution with smaller ionic radius Ca in AFFeAs materials leads to a lattice contruction and stronger Fe(3d)-As(4p) hybridization resulting in smaller value of the density of states at the Fermi level in the case of Ca compound. So to some extend Ca system reminds RE111 with later Rare Earths. However Fermi surface of new fluorides is found to be nearly perfect two-dimensional. Also we do not expect strong dependence of superconducting properties with respect to different types of A substitutes.Comment: 5 pages, 4 figure

    Electronic compressibility of layer polarized bilayer graphene

    Full text link
    We report on a capacitance study of dual gated bilayer graphene. The measured capacitance allows us to probe the electronic compressibility as a function of carrier density, temperature, and applied perpendicular electrical displacement D. As a band gap is induced with increasing D, the compressibility minimum at charge neutrality becomes deeper but remains finite, suggesting the presence of localized states within the energy gap. Temperature dependent capacitance measurements show that compressibility is sensitive to the intrinsic band gap. For large displacements, an additional peak appears in the compressibility as a function of density, corresponding to the presence of a 1-dimensional van Hove singularity (vHs) at the band edge arising from the quartic bilayer graphene band structure. For D > 0, the additional peak is observed only for electrons, while D < 0 the peak appears only for holes. This asymmetry that can be understood in terms of the finite interlayer separation and may be useful as a direct probe of the layer polarization

    Recommendation model based on opinion diffusion

    Get PDF
    Information overload in the modern society calls for highly efficient recommendation algorithms. In this letter we present a novel diffusion based recommendation model, with users' ratings built into a transition matrix. To speed up computation we introduce a Green function method. The numerical tests on a benchmark database show that our prediction is superior to the standard recommendation methods.Comment: 5 pages, 2 figure

    Perturbation Theory of High-Tc Superconductivity in Iron Pnictides

    Full text link
    The high-transition-temperature (high-Tc) superconductivity discovered recently in iron pnictides is analyzed within a perturbation theory. Specifically, the probable pairing symmetry, the doping dependence of the transition temperature and the pairing mechanism are studied by solving the Eliashberg equation for multi-band (2- and 5-band) Hubbard models with realistic electronic structures. The effective pairing interaction is expanded perturbatively in the on-site Coulomb integrals up to third order. Our perturbative weak-coupling approach shows that sufficiently large eigenvalues of the Eliashberg equation are obtained to explain the actual high transition temperatures by taking realistic on-site Coulomb integrals in the 5-band model. Thus, unconventional (non-phonon-mediated) superconductivity is highly likely to be realized. The superconducting order parameter does not change its sign on the Fermi surfaces, but it does change between the electron and hole Fermi surfaces. Consequently, the probable pairing symmetry is always "a nodeless extended s-wave symmetry (more specifically, an s_{+-}-wave symmetry)" over the whole parameter region that we investigated. It is suggested that the 2-band model is insufficient to explain the high values of Tc.Comment: 24 pages, 9 figure

    Nano-Size Layered Manganese-Calcium Oxide as an Efficient and Biomimetic Catalyst for Water Oxidation Under Acidic Conditions: Comparable To Platinum

    Get PDF
    Inspired by Nature's catalyst, a nano-size layered manganese-calcium oxide showed a low overvoltage for water oxidation in acidic solutions, which is comparable to platinum.Institute for Advanced Studies in Basic Sciences and the National Elite FoundationUS Department of Energy, Office of Basic Energy Sciences, Division of Chemical, Geochemical and Biological Sciences DE-FG02-86ER13622, DE-FG0209ER16119Russian Foundation for Basic Research 11-04-01389a, 12-0492101a, 13-04-92711aMolecular and Cell Biology Programs of the Russian Academy of SciencesCenter for Electrochemistr

    Limits on the Superconducting Order Parameter in NdFeAsO1x_{1-x}Fy_y from Scanning SQUID Microscopy

    Full text link
    Identifying the symmetry of the superconducting order parameter in the recently-discovered ferro-oxypnictide family of superconductors, RFeAsO1x_{1-x}Fy_{y}, where RR is a rare earth, is a high priority. Many of the proposed order parameters have internal π\pi phase shifts, like the d-wave order found in the cuprates, which would result in direction-dependent phase shifts in tunnelling. In dense polycrystalline samples, these phase shifts in turn would result in spontaneous orbital currents and magnetization in the superconducting state. We perform scanning SQUID microscopy on a dense polycrystalline sample of \NdFeAsO0.94_{0.94}F0.06_{0.06} with Tc=48T_c=48 K and find no such spontaneous currents, ruling out many of the proposed order parameters.Comment: 10 pages, 5 figures; to appear in JPS
    corecore