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Abstract – Information overload in the modern society calls for highly efficient recommendation
algorithms. In this letter we present a novel diffusion-based recommendation model, with users’
ratings built into a transition matrix. To speed up computation we introduce a Green function
method. The numerical tests on a benchmark database show that our prediction is superior to the
standard recommendation methods.

Introduction. – The exponential growth of the Inter-
net [1] and the World-Wide-Web [2] confronts us with the
information overload: we face too many data and data
sources, making us unable to find the relevant results. As
a consequence we need automated ways to deal with the
data. Recently, a lot of work has been done in this field.
The two main directions of the research are correlation-
based methods [3,4] and spectral methods [5]. A good
overview of the achieved results can be found in [6,7].
Despite the amount of work done, the problem is
not satisfactorily exploited yet as both the prediction
accuracy and the computational complexity can be further
improved. In this letter we propose a new method based
on diffusion of the users’ opinions in an object-to-object
network. This method can be used for any data where
users evaluate objects on an integer scale. Using data
from a real recommender application (GroupLens project)
we show that the present model performs better than
the standard recommendation methods. In addition, a
Green function method is proposed here to further reduce
computation in some cases.

The model. – In the input data, we label the total
number of users as M and the total number of objects
as N (since we focus here on the movie recommendation,
instead of the general term object we often use the term
movie). To make a better distinction between these two
groups, for user-related indices we use lower-case letters
i, j, k, . . . and for movie-related indices we use Greek letters
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α, β, γ, . . . . We assume that users’ assessments are given
in the integer scale from 1 (very bad) to 5 (very good). The
rating of user i for movie α we denote viα. The number
of movies rated by user i we label ki. The rating data
can be described by the weighted bipartite graph where
the link between user i and movie α is formed when user
i has already rated movie α and the link weight is viα.
Such a bipartite graph can give rise to two different types
of graphs (often called projections): object-to-object and
user-to-user. A general discussion on information networks
can be found in [8], projections of bipartite graphs are
closely investigated in [9,10].
The recommendation process starts with the prepara-
tion of a particular object-to-object projection of the input
data. Projections usually lead to a loss of information.
In order to eliminate this phenomenon, instead of merely
creating a link between two movies, we link the ratings
given to this pair of movies. As a result, we obtain 25
separate connections (channels) for each movie pair. This
is illustrated in fig. 1 on an example of a user who has rated
three movies; as a result, three links are created between
the given movies. When we process data from all users,
contributions from all users shall accumulate to obtain
an aggregate representation of the input data: a weighted
movie-to-movie network. From the methodological point
of view, this model is similar to the well-known quantum
diffusion process (see [11,12]).
To each user we need to assign a weight. In general,
if user i has rated ki movies, ki(ki− 1)/2 links in the
network are created (or fortified). If we set the user weight
to 1/(ki− 1), the total contribution of user i is directly
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Fig. 1: Graphical representation of the links created by a user
who has rated only movies 1 (rating 5), 2 (rating 3), and
3 (rating 4).

proportional to ki, and this is a plausible premise
1. Since

the users who have seen only one movie add no links to
the movie-to-movie network, the divergence of the weight
1/(ki− 1) at ki = 1 is not an obstacle.
Since between each pair of movies (α, β) we create
multiple links, it is convenient to write their weights as
a 5× 5 matrix Wαβ . Each rating can be represented by
a column vector in 5-dimensional space: we represent
rating viα = 1 as viα = (1, 0, 0, 0, 0)

T , rating viα = 2 as
viα = (0, 1, 0, 0, 0)

T , and so forth. If the vote has not
been given yet, we set viα = (0, 0, 0, 0, 0)

T . Then using the
linking scheme from fig. 1 and the user weights 1/(ki− 1)
we write

Wαβ =
M∑
i=1

viαv
T
iβ

ki− 1 , (1)

where we sum contributions from all users. In this way
we convert the original data represented by a weighted
bipartite graph into a weighted object-to-object network.
The non-normalized weights Wαβ form a symmetric
matrix W with dimensions 5N × 5N . By the column
normalization of W we obtain an unsymmetric matrix Ω.
It describes a diffusion process on the underlying network
with the outgoing weights from any node in the graph
normalized to unity (see also a similar diffusion-like
process in [14] and the PageRank algorithm2).
Now we shall investigate the equation

Ωh=h, (2)

where h is a 5N -dimensional vector (the first 5 elements
correspond to movie 1, the next 5 elements to movie 2,
etc.). Denote nαs (α= 1, . . . ,M , s= 1, . . . , 5) the number
of times movie α has been rated with the rating s. Here

1Here one can recall the famous set of equations for PageRank
G(i) of webpage i. It has the form G(i) = α+(1−α)∑j∼iG(j)/kj ,
where the subscript j runs over all the webpages that contain a link
to webpage i (j ∼ i), for details see [13]. Here a similar scaling of the
contributions by the inverse of the node degree arises. By a numerical
solution of the set, one obtains values G(i) which are essential for
the Google search algorithm.
2Incidentally, the PageRank algorithm normalizes the flux out-

going from a node in a similar way and thus it also represents
diffusion or a random walk. If one chooses the row normalization
instead, the resulting process is equivalent to heat conduction in the
network.

we exclude the votes given by the users who have rated
only one movie because these users do not contribute to
Ω. It is easy to prove that the vector

h∗ = (n11, . . . , n15, . . . , nN1, . . . , nN5)T (3)

is a solution of eq. (2). Moreover, the solution is unique up
to multiplication by a constant and, as we will see later, all
vectors in the form λh, λ �= 0, lead to identical predictions.
Denote L := 1−Ω the Laplace matrix, the forementioned
uniqueness of h∗ is equivalent to rank (L) = 5N − 1, which
we prove in the following paragraph. It is worthwhile to
emphasize that the unique solution h∗ reproduces some
features of the original input data, which strongly supports
rationality and relevance of the construction of Ω.
Using elementary row/column operations one can shift
all the rows/columns corresponding to the zero-rows/zero-
columns of Ω to the bottom and right of L, leading to(
L′ O
O 1

)
, where O and 1 are the zero and the identity matrix.

The dimension of 1 we label as D, the dimension of L′ is
then 5N −D. The matrix L′ has four properties: i) All its
diagonal elements are 1. ii) All its non-diagonal elements
lie in the range [−1, 0]. iii) The sum of each column is zero.
iv) In each row, there is at least one non-diagonal non-
zero element. One can prove that the rank of any matrix
with these four properties is equal to its dimension minus
one, 5N −D− 1 in this case. Since rank(1) =D, together
we have rank(L) = rank(L′)+ rank(1) = 5N − 1. Details of
the proof will be shown in an extended paper.
The matrix Ω codes the connectivities between different
ratings in the movie-to-movie network, and could yield to
a recommendation for a particular user. Since the matrix
represents only the aggregated information, in order to
obtain recommendations for a particular user, we need
to utilize opinions expressed by this user. We do so by
imposing these ratings as fixed elements of h in eq. (2).
These fixed elements can be considered as a boundary
condition of the given diffusion process; they influence
our expectations on unexpressed ratings. In other words,
large weights in Ω represent strong patterns in user ratings
(e.g. most of those who rated movie X with 5 gave 3
to movie Y) and diffusion of the ratings expressed by a
particular user in the movie-to-movie network makes use
of these patterns.
The discussion above leads us to the equation

Ωihi =hi, (4)

where Ωi := Ω for the rows corresponding to the
movies unrated by user i and Ωi := 1 for the remaining
rows. Such a definition keeps entries corresponding to the
movies rated by user i preserved. The solution of eq. (4)
can be numerically obtained in a simple iterative way.

We start with h
(0)
i where elements corresponding to the

movies rated by user i are set according to these ratings
and the remaining elements are set to zero. Then by the

iteration equation h
(n+1)
i =Ωih

(n)
i we propagate already

expressed opinions of user i over the network, eventually
leading to the stationary solution hi. Intermediate results
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h
(n)
i contain information about the movies unrated by
user i, which can give rise to a recommendation. We
obtain the rating prediction as the standard weighted
average. For example, if for a given movie in hi we obtain
the 5-tuple (0.1, 0.2, 0.4, 0.3, 0.0)T , the rating prediction
is v̂= 2.9. Notice that if a user has rated no movies, we
have to use a different method (for example the movie
average introduced later) to make a prediction. This
feature is common for recommender systems producing
personalized predictions.

Avoiding the iterations. – While simple, the iter-
ative way to solve eq. (4) has one important drawback:
the iterations have to be made for every user separately.
Consequently, the computational complexity of the
algorithm is high. To get rid of this difficulty we rewrite
eq. (4) as Lhi = ji, again L= 1−Ω. Here the external
flux ji is non-zero only for the elements representing the
boundary condition of user i.
The solution hi can be formally written in the form
hi =Gji. This resembles the well-known Green function
approach: once G is known, hi can be found by a simple
matrix multiplication. While the source term ji is not
a priori known, we can get rid of it by reshuffling of the
movies and grouping the boundary elements in hi. After
this formal manipulation we obtain(

hBi
hFi

)
=

(
GBB GBF
GFB GFF

)(
jBi
0

)
, (5)

where B stands for boundary and F for free. Now it follows
that hBi =GBBj

B
i and h

F
i =GFBj

B
i , leading us to the final

result
hFi =GFBG

−1
BBh

B
i . (6)

Since most users have rated only a small part of all M
movies, the dimension of GBB is usually much smaller than
that of G and thus the inversion G−1BB is cheap.
The last missing point is that since L is singular (as

we have mentioned, rank(L) = 5N − 1), the form of G
cannot be obtained by inverting L. Hence we use the
Moore-Penrose pseudoinverse [15]

G=L† = lim
k→∞

[
1+Ω+Ω2+ · · ·+Ωk − kwRwL

]
, (7)

where wR and wL is the right and left eigenvector of Ω,
respectively, both corresponding to the eigenvalue 1. For
practical purposes, the infinite summation in eq. (7) can
be truncated at a finite value k.

Personal polarization. – Before the described
method can be used in real-life examples, there is one
important technical problem. Each user has a different
style of rating —some people tend to be very strict and on
average give low marks, some people prefer to give either
1 or 5, some do not like to give low marks, and so forth.
Thus, ratings cannot be grouped together in matrices
Wαβ in the straightforward and näıve way we described
before for they mean different things to different people.

To deal with this phenomenon, which we refer to as
personal polarization, unification of ratings from different
users is used before summing users’ contributions in the
object-to-object network. Consequently, before reporting
resulting predictions to a user, the output of the algorithm
has to be shifted back to the user’s scale and personaliza-
tion is needed.
To characterize the rating profile of user i we use the
mean μi and the standard deviation σi of the votes given
by him, and we compare these values with the mean mi
and the standard deviation si of the ratings given by all
users. Notably, the quantities mi and si take into account
only the movies rated by user i —if a user has a low
average rating because he has been rating only bad movies,
there is no need to manipulate his ratings. To conform a
user rating profile to the society rating profile we use the
linear transformation

uiα =mi+(viα−μi) si
σi
. (8)

Personalization of the predicted value is done by the
inverse formula viα = μi+(uiα−mi)σi/si. We can notice
that while viα is an integer value, uiα is a real number.
Nevetheless, one can obtain its vector representation in
the straightforward way: e.g. u= 3.7 is modelled by the
vector (0, 0, 0.3, 0.7, 0)T ; the weighted mean corresponding
to this vector is equal to the input value 3.7.

Benchmark methods. – In correlation-based meth-
ods, rating correlations between users are quantified
and utilized to obtain predictions. We present here one
implementation of such a method, which serves as a
benchmark for the proposed diffusion model. The correla-
tion Cij between users i and j is calculated with Pearson’s
formula

Cij =

∑∗
α(viα−μi)(vjα−μj)√∑∗

α(viα−μi)2
√∑∗

α(vjα−μj)2
, (9)

where we sum over all movies rated by both i and j
(to remind this, there is a star added to the summation
symbols); Cij := 0 when users i and j have no movies in
common. Due to the data sparsity, the number of user
pairs with zero correlation can be high and the resulting
prediction performance poor. To deal with this effect,
in [16] it is suggested to replace the zero correlations by the
society average of Cij . In the numerical tests presented in
this letter the resulting improvement was small and thus
we use eq. (9) in its original form. Finally, the predictions
are obtained using the formula

v̂iα = μi+
∑′

j

Cij∑′
k Cik

(vjα−μj). (10)

Here we sum over the users who have rated movie α (prime
symbols added to sums are used to indicate this), the term∑′
k Cik serves as a normalization factor.
As a second benchmark method we use recommendation
by the movie average (MA) where one has v̂iα =mα, mα
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is the average rating of movie α. This method is not
personalized (for a given object, all users obtain the same
prediction) and has an inferior performance. As it is very
fast and easy to implement, it is still widely used. Notably,
when the unification-personalization scheme is employed
together with MA, the predictions get personalized. As
we will see later, in this way the prediction performance
is increased considerably without a notable impact on the
computation complexity.

Numerical results. – To test the proposed diffusion
based (DB) method we use the GroupLens project data,
available at www.grouplens.org. The total number of
users is M = 943, the total number of movies is N = 1682,
and the ratings are integer values from 1 to 5. The number
of given ratings is 100000, corresponding to the voting
matrix sparsity around 6%.
To test the described methods, randomly selected 10%
of the available data is transfered to the probe file P,
and the remaining 90% is used as an input data for the
recommendation. Then we make a prediction for all entries
contained in the probe and measure the difference between
the predicted value v̂iα and the actual value viα. For an
aggregate review of the prediction performance we use two
common quantities: root-mean-square error (RMSE) and
mean absolute error (MAE). They are defined as

MAE=
1

n

∑
P
|viα− v̂iα|, (11a)

RMSE=

[
1

n

∑
P
(viα− v̂iα)2

]1/2
, (11b)

where the summations go over all user-movie pairs (i, α)
included in the probe P and n is the number of these
pairs in each probe dataset. To obtain a better statistics,
the described procedure can be repeated many times with
different selections of the probe data. We used 10 repeti-
tions and in addition to the averages of MAE and RMSE
we found also standard deviations of both quantities.
In contrast with the expectations, in fig. 2 it can be
seen that the prediction performance is getting worse by
a small amount when more than one iteration of eq. (4)
is used to obtain the prediction. Probably this is due to
the presence of overfitting —starting from the second
iteration, our expectations are influenced not only by
actually expressed ratings but also by our expectations
about unexpressed ratings obtained in previous iteration
steps. Nevertheless, as will be shown later, the perfor-
mance achieved by the first iteration is good and justifies
the validity of the proposed model. In the following para-
graphs we use only one iteration to obtain the predictions.
Consequently, the Green function method introduced
above is not necessary —we decided to expose it in this
paper because it can be useful with other datasets.
In table 1 we compare the prediction accuracy for
the movie-average method (MA), the correlation-based
method (CB), and for the opinion diffusion (OD). To
measure the prediction performances we use both RMSE

0 1 2 3 4 5
n

max

0.930

0.932

0.934

0.936

R
M

SE

Fig. 2: Prediction performance for the predictions v̂iα obtained
by iterations of eq. (4) using various numbers of iterations
steps.

Table 1: Comparison of the three recommendation methods:
movie average (MA), correlation-based method (CB), and
opinion diffusion (OD). Presented values are averages obtained
using 10 different probes; standard deviations are approxi-
mately 0.01 in all investigated cases.

No unification With unification

Method RMSE MAE RMSE MAE

MA 1.18 0.91 1.01 0.79
CB 1.09 0.86 1.09 0.86
OD 1.00 0.80 0.93 0.73

and MAE as defined above. All three methods are
tested both with and without employing the unification-
personalization scheme. In accordance with expectations,
for MA and OD the performances with unification
included are better than without it; for the simplest
tested method, MA, the difference is particularly remark-
able. By contrast, CB is little sensitive to the unification
procedure and when we drop the multiplication by σi/si
from the unification-personalization process given by
eq. (8), the difference disappears completely (which can
be also confirmed analytically). According to the predic-
tion performances shown in table 1 we can conclude that
the diffusion method outperforms the other two clearly in
all tested cases (RMSE/MAE, with/without unification).
When computation complexity is taken into account, it
can be shown that if M >N , the proposed method is
more effective than correlation-based methods (but, of
course, less effective than using the movie average).

Conclusion. – We have proposed a novel recommen-
dation method based on diffusion of opinions expressed
by a user over the object-to-object network. Since the
rating polarization effect is present, we have suggested
the unification-personalization approach as an additional
layer of the recommender system. To allow a computation
reduction with some datasets, a Green function method
has been introduced. The proposed method has been
compared with two standard recommendation algorithms
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and it has achieved consistently better results. Notably,
it is executable even for the large dataset (17770 movies,
480189 users) released by Netflix (a DVD rental company,
see www.netflixprize.com). In addition, our model is
tune-free in essence —it does not require extensive testing
and optimization to produce a high-quality output. This
is good news for practitioners.
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