8 research outputs found

    Alum sludge as an efficient sorbent for hydrogen sulfide removal: Experimental, mechanisms and modeling studies

    Get PDF
    International audienceThis paper firstly reported a systematic study of using alum sludge (waterworks residue) for H2S adsorption. Various trials were performed at ambient temperature in a fixed bed column to study the effects of H2S flow rate, sorbent bed depth on the alum sludge adsorption efficiency of H2S. The Breakthrough Curves were simulated by the Thomas model, Bed Depth Service Time model and Yoon-Nelson models. The mechanisms of H2S adsorption onto alum sludge was examined by different physiochemical characterizations of exhausted and raw alum sludge. Moreover, the mass transfer coefficients were determined from mathematical descriptions of breakthrough curves. The alum sludge adsorption capacity was determined to be 374.2 mg of H2S/g, slightly decreasing with the increasing flow rate and increasing with the increasing bed depth. All the three models successfully predict breakthrough curves which could be used for scaling-up purposes. The microporous structure, alkaline pH and the inherent metal species of the alum sludge promoted the formation of metal sulphate species. This study demonstrated that alum sludge could be used as cost-effective, largely available, and efficient sorbent for H2S removal

    Transformation de boues issues du traitement d'eau potable en produit à haute valeur ajoutée

    No full text
    The production of drinking water always accompanied by the generation of water treatment residues (WTRs). Alum sludge is one of the WTRs, it is an easily, locally and largely available by-product worldwide. This work focuses on the identification of different ways to valorize the alum sludge for environmentally friendly reuse. Two alum sludges collected from France and Ireland have been reused in various fields as a function of their characteristics. Firstly, alum sludge was used as a partial replacement for clay in brick making, by incorporating different percentages of alum sludge and calcined at different temperatures (range from 800 to 1200 °C). The resultant bricks were tested for compression, Loss on Ignition, water absorption, appearance, etc. Results show that alum sludge-clay bricks have met the “European and Irish Standards” and demonstrated the huge industrial application potential for alum sludge in Irish clay brick manufacturing. Glyphosate is an active ingredient in pesticide which is massive employed in agriculture. Alum sludge and Irish peat were compared for glyphosate removal in pot tests, results show that alum sludge present significant glyphosate removal capacity (>99 %) and could reduce the level of Chemical Oxygen Demand (COD). It provided a scientific clue for sorbents selection when considering the agricultural wastewater treatment in Ireland and to maximize their value in practice. The co-conditioning and dewatering of sewerage sludge with liquid alum sludge was also investigated in Jar-test based on the case analysis of a water industry in France. Results show that the optimal sludge mix ratio is 1:1, the use of the alum sludge has been shown to beneficially enhance the dewaterability of the resultant mixed sludge, and highlighting a huge polymer saving (14 times less than the current technologies) and provided a sustainable and technical sludge disposal route for the local water industry. The use of alum sludge as a sorbent for gas purification was studied by H2S adsorption experiments in a fixed-bed reactor with various operating parameters. The experimental breakthrough data were modeled with empirical models based on adsorption kinetics. Results show that alum sludge is an efficient sorbent for H2S removal (capacity of 374.2 mg/g) and the mechanisms including dissociative adsorption and oxidation were proposed. Moreover, the overall mass transfer coefficients were calculated which could be used for the process scaling up. Finally, alum sludge cakes were reused in the novel aerated alum sludge constructed wetland (CW), which were designed for simultaneous H2S purification and wastewater treatment. Results show that H2S was completely removed in the six months’ trials, while the high removal efficiencies of COD, total nitrogen (TN), total phosphates (TP) were achieved. Thus, a novel eco-friendly CW for simultaneous H2S purification and wastewater treatment was developed. In the different approaches and process considered, in particular it was put in investigating and describing the mechanisms involved. Overall, this work demonstrated alum sludge could be a promising by- product for various novel beneficial reuse rather than landfilling and provided a “Circular Economy” approach for WTRs management.La forte augmentation de la population mondiale entraîne une demande croissante en eau potable. La production d'eau potable est accompagnée par la génération de résidus du traitement de l'eau dont la boue d'aluminium qui est donc largement disponible mondialement. Ce travail se concentre sur l'identification des différentes voies de valorisation des boues d'aluminium afin de les réutiliser dans le domaine de l’environnement. Deux sources de boues d'aluminium, collectées en France et en Irlande, ont été étudiées dans divers domaines d’application en fonction de leurs caractéristiques. Tout d'abord, les boues d'aluminium ont été utilisées en remplacement d’une partie de l'argile dans la fabrication des briques, en incorporant différents pourcentages de boues d'aluminium et à différentes températures. Les briques résultantes ont été caractérisées et les résultats ont montré que les briques composées de boues d'aluminium et d'argile sont conformes aux « normes européennes et irlandaises » et démontrent ainsi le potentiel pour une application industrielle des boues d'aluminium dans la fabrication de briques en terre cuite irlandaises. Dans un second temps, les boues d’aluminium ont été utilisées comme adsorbant des polluants présents dans l’agriculture. Le glyphosate est un ingrédient actif dans les pesticides utilisés massivement dans l'agriculture irlandaise et représente une problématique environnementale. La boue d’aluminium et la tourbe irlandaise ont été comparées pour l’élimination du glyphosate lors de tests en pot à l’échelle laboratoire. Les résultats ont montré que la boue d’aluminium permet d’éliminer le glyphosate à plus de 99% et réduire les niveaux de DCO. Cet aspect scientifique a permis d’être dans la sélection des adsorbants possibles pour le traitement des eaux usées agricoles en Irlande. Le co-conditionnement et la déshydratation des boues de station d’épuration avec des boues d’aluminium liquides ont également été étudiés. Pour cela, le Jar test a été effectué sur des boues issues d’une station de traitement des eaux française. Les résultats ont montré que le rapport optimal de mélange des boues est de 1:1 (boues d’épuration : boues d’aluminium). Ainsi, la quantité de polymère utilisée peut être diminuée de 14 fois par rapport aux technologies actuelles. Cette approche a permis de montrer la possible valorisation des boues d’aluminium comme un moyen durable et technique permettant ainsi l’élimination des boues localement pour une même station de traitement des eaux. Une autre voie de valorisation des boues d’aluminium comme adsorbant pour la purification des gaz a été étudiée lors d’expériences d’adsorption de H2S dans un réacteur à lit fixe dans différentes conditions expérimentales. Les données expérimentales d’adsorption du H2S ont été modélisées à l'aide de modèles empiriques basés sur la cinétique des processus d'adsorption. Les résultats ont montré que les boues d'aluminium sont un adsorbant efficace pour l'élimination du H2S (capacité de 374,2 mg H2S / g solide) et que des mécanismes mis en jeu sont l'adsorption dissociative et l'oxydation. Les coefficients de transfert de masse globaux ont également été calculés et pouvant ainsi être utilisés pour la prédiction. Enfin, les gâteaux de boues d'aluminium ont été réutilisés pour la purification simultanée d’H2S et le traitement des eaux usées. Les résultats ont montré la capacité de cet adsorbant pour éliminer tout le H2S présent avec une grande efficacité d’élimination de la DCO, TN et TP. Ainsi, il a été démontré la valorisation des boues d’aluminium en tant qu’adsorbant pour une purification du H2S simultanée avec le traitement des eaux usées

    Granulation of Drinking Water Treatment Residues: Recent Advances and Prospects

    No full text
    Beneficial reuse of drinking water treatment plant residues (WTRs) has been intensively studied worldwide in the last decades, but few engineering applications can be found. The majority of WTRs were directly reused in cake form (after dewatering), e.g., alum sludge cake as main substrate used in constructed wetlands (CWs), or oven dried and ground powdery form, e.g., sorbent for pollutant removal. However, WTRs reuse in such forms has several drawbacks, i.e., difficulty of recovering and easy clogging (in CWs), which result in limited WTRs engineering applications. Granulation or pelleting could widen and be a wiser WTRs reuse route and also seems to be a promising strategy to overcome the “application bottleneck” issues. In the literature, a number of trials of WTRs granulation have been reported since 2008, including sintering ceramsite, gel entrapment and newly emerged techniques. Hence, there is a need to overlook these studies and promote WTRs granulation for further development. To this end, this review firstly provides a piece of updated comprehensive information and critical analysis regarding WTRs granulation/pelleting technology. It aims to enhance WTRs granulation studies in the developing stage and thus enlarge WTRs engineering applications

    Developing a Novel Alum Sludge-Based Floating Treatment Wetland for Natural Water Restoration

    No full text
    Novel alum sludge-based floating treatment wetland (FTW) was developed to enhance the purification performances of natural water bodies, i.e., rivers, lakes, and ponds. Polyurethane was applied to foam the lightweight alum sludge based-substrate (PU-AL) of FTW through the response surface method. Three FTWs configurations were created for a half-year lab-scale operation, and the PU-AL FTW presents the greatest purification performance in the removal rate of chemical oxygen demand (COD) of 62.58 ± 6.65%, total nitrogen (TN) of 53.31 ± 4.65%, and total phosphorus (TP) of 45.39 ± 4.69%. PU-AL substrate could enhance the nutrient removal performance of existing FTW by providing a proper media for microbial and plants’ growth. This study provides a good solution and showcase not only from a natural water restoration point of view but also from the waterworks sludge management view for a better understanding of FTWs and good applications in engineering practice

    Developing a Novel Alum Sludge-Based Floating Treatment Wetland for Natural Water Restoration

    No full text
    Novel alum sludge-based floating treatment wetland (FTW) was developed to enhance the purification performances of natural water bodies, i.e., rivers, lakes, and ponds. Polyurethane was applied to foam the lightweight alum sludge based-substrate (PU-AL) of FTW through the response surface method. Three FTWs configurations were created for a half-year lab-scale operation, and the PU-AL FTW presents the greatest purification performance in the removal rate of chemical oxygen demand (COD) of 62.58 ± 6.65%, total nitrogen (TN) of 53.31 ± 4.65%, and total phosphorus (TP) of 45.39 ± 4.69%. PU-AL substrate could enhance the nutrient removal performance of existing FTW by providing a proper media for microbial and plants’ growth. This study provides a good solution and showcase not only from a natural water restoration point of view but also from the waterworks sludge management view for a better understanding of FTWs and good applications in engineering practice

    Influence assessment of new Inner Tube Porous Brick with absorbent concrete on urban floods control

    No full text
    As a part of low impact development (LID) measures, modifying the design of Inner Tube Porous Bricks (ITPB) may improve the functionality of the pavement to prevent urban floods. Absorbent concrete (AC) with different Super Absorbent Polymers (SAP) concentration was used as the brick materials to adsorb 311–376 l water per m3 AC after 120 min, and the hydraulic conductivity was calculated to vary between 34.59 mm/h and 74.8 mm/h for different ACs. The Storm Water Management Model (SWMM) is used here to simulate the influence of the ITPB on urban floods. When the return period (P) equals 100 years, the peak inflow of drainage networks can be decreased from 254.55 l/s to 91.12 l/s and the stormwater could be infiltrated 52.49 mm in low permeability areas (e.g. clay) by ITPB pavement. ITPB can be used as a new LID pavement in clay areas or be used to mitigate urban floods of long return period storms. Which should be noted is that the declared values about the simulation are valid in the study areas, further research is needed on the applicability of ITPB to the overall world
    corecore