89 research outputs found

    Single-chain glycopolymer folding via host-guest interactions and its unprecedented effect on DC-SIGN binding

    Get PDF
    Reversible self-folding actions of natural biomacromolecules play crucial roles for specific and unique biological functions in Nature. Hence, controlled folding of single polymer chains has attracted significant attention in recent years. Herein, reversible single-chain folded glycopolymer structures in α-shape with different density of sugar moieties in the knot were created. The influence of folding as well as the sugar density in the knot was investigated on the binding capability with lectins, such as ConA, DC-SIGN and DC-SIGNR. The synthesis of triblock glycocopolymers bearing β-CD and adamantane for the host-guest interaction and also mannose residues for the lectin interaction was achieved using the reversible addition-fragmentation chain transfer (RAFT) polymerization technique. The reversible single-chain folding of glycopolymers was achieved under a high dilution of an aqueous solution and the self-assembled folding was monitored by 2D nuclear overhauser enhancement spectroscopy (NOESY) NMR and dynamic light scattering. The lectin binding profiles consistently provided an unprecedented effect of single chain folding as the single-chain folded structures enhanced greatly the binding ability in comparison to the unfolded linear structures

    One-pot synthesis of amphiphilic multiblock poly(2-oxazoline)s via para-fluoro-thiol click reactions

    Get PDF
    A clickable initiator, pentafluoro benzyl bromide, has been investigated for the cationic ring opening polymerization of poly(2-oxazolines). Additionally, the clickable alpha end group was then utilized in a para-fluoro-thiol click reaction to synthesise linear diblock, tetrablock, multiblock copolymers as well as star shaped poly(2-oxazoline)s using dithiol compounds as terminating agents. Thus, a one-pot approach combining the para-fluoro-thiol click reaction and direct termination of the poly(2-oxazoline) living chain end with 4,4-thiobisbenzenethiol has been performed to prepare multiblock copolymers of poly(2-ethyl-2-oxazoline) (PEtOx) and poly((2-ethyl-2-oxazoline)-b-(2-methyl-2-oxazoline) (PEtOx-mb-PMeOx). All obtained polymers were characterized by Size Exclusion Chromatography (SEC), 1H Nuclear Magnetic Resonance (NMR) and Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-ToF) mass spectrometry. Last but not least, the self-assembly properties of prepared amphiphilic polymers were studied with DLS and TEM. Nanoparticles with a diameter ranging from 184 nm to 250 nm were observed in TEM for PEtOx-mb-PMeOx copolymers

    Step-growth glycopolymers with a defined tacticity for selective carbohydrate–lectin recognition

    Get PDF
    Glycopolymers are potent candidates for biomedical applications by exploiting multivalent carbohydrate–lectin interactions. Owing to their specific recognition capabilities, glycosylated polymers can be utilized for targeted drug delivery to certain cell types bearing the corresponding lectin receptors. A fundamental challenge in glycopolymer research, however, is the specificity of recognition to receptors binding to the same sugar unit (e.g., mannose). Variation of polymer backbone chirality has emerged as an effective method to distinguish between lectins on a molecular level. Herein, we present a facile route toward producing glycopolymers with a defined tacticity based on a step-growth polymerization technique using click chemistry. A set of polymers have been fabricated and further functionalized with mannose moieties to enable lectin binding to receptors relevant to the immune system (mannose-binding lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin, and dendritic and thymic epithelial cell-205). Surface plasmon resonance spectrometry was employed to determine the kinetic parameters of the step-growth glycopolymers. The results highlight the importance of structural complexity in advancing glycopolymer synthesis, yet multivalency remains a main driving force in lectin recognition

    Bottlebrush glycopolymers from 2-oxazolines and acrylamides for targeting DC-SIGN and MBL

    Get PDF
    Lectins are omnipresent carbohydrate binding proteins, which are involved in a multitude of biological processes. Unearthing their binding properties is a powerful tool towards the understanding and modification of their functions in biological applications. In here, we present the synthesis of glycopolymers with a brush architecture via a “grafting from” methodology. The use of a versatile 2-oxazoline inimer was demonstrated to open avenues for a wide range of 2-oxazoline/acrylamide bottle brush polymers utilizing aqueous Cu-mediated reversible deactivation radical polymerization (Cu-RDRP). The polymers in the obtained library were assessed on their thermal properties in aqueous solution and their binding towards the C-type animal lectins dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) and mannose-binding lectin (MBL) via surface plasmon resonance spectrometry. The encapsulation properties of a hydrophobic drug-mimicking compound demonstrated the potential use of glyco brush copolymers in biological applications

    Degradable glycopolymers for saRNA transfection

    Get PDF
    Gene delivery is a powerful technique that is often exploited in the treatment of several diseases. Currently, most gene vectors are expensive virus-based systems, which can trigger immune responses. As a cheaper and safer alternative to these systems, biodegradable polymers have been widely used to develop gene delivery systems due to their different desirable characteristics. In particular, poly(amido amine)s possess critical desirable characteristics, such as high cell transfection activity, that make them suitable and efficient for gene delivery. In this study, reducible poly(amido amine)s with different side chain lengths and glycopolymers have been developed to create polyplexes with self-amplifying RNA (saRNA). The cell transfection assay showed that sugar decorated poly(amido amine)s revealed better saRNA transfection activity than other non-decorated poly(amido amine)s. Nevertheless, no differences were obtained between the poly(amido amine)s with different side chain lengths. Overall, biodegradable poly(amido amine)s with different alcohols and sugars have been synthesized with high molecular weights and low molecular weight distributions to develop an optimal saRNA delivery system

    Poly(2-oxazoline)/saRNA polyplexes for targeted and nonviral gene delivery

    Get PDF
    RNA delivery has been demonstrated to be a potent method of vaccine delivery, as demonstrated by the recent success of the COVID-19 vaccines. Polymers have been shown to be effective vehicles for RNA delivery, with poly­(ethylene imine) (PEI) being the current gold standard for delivery. Nonetheless, PEI has toxicity concerns, and so finding alternatives is desirable. Poly­(2-oxazoline)­s are a promising alternative to PEI, as they are generally biocompatible and offer a high degree of control over the polymer structure. Here, we have synthesized an ionizable primary amine 2-oxazoline and combined it with a double bond containing oxazoline to synthesize a small library of charged statistical and block copolymers. The pendant double bonds were reacted further to decorate the polymers with glucose via a thiol–ene click reaction. All polymers were shown to have excellent cell viability, and the synthesized block polymers showed promising complexation efficiencies for the saRNA, demonstrating a clear structure–property relationship. The polymer transfection potential was tested in various cell lines, and a polymer composition with an amine/glucose ratio of 9:27 has demonstrated the best transfection potential across all cell lines tested. Overall, the results suggest that block polymers with a cationic segment and high levels of glycosylation have the best complexation efficiency and RNA expression levels

    Changing Trends and Experience with Esophageal Cancer Surgery in a Single University Hospital: Are The Results Similar or Not?

    Get PDF
    Objective: The main treatment modality for esophageal cancer remains to be surgery. Over the last decades, surgical strategies have evolved remarkably. When neoadjuvant chemoradiotherapy became standard, discussions about the role, type, and timing of surgery began. In this study, we share results we obtained after operating our patients using various surgical techniques.Material and Methods:Reliable data from 51 esophageal cancer patients were evaluated retrospectively. Of the 51 cases, 31 were operable. These operable cases were further classified according to surgical method and neoadjuvant therapy status. Median survival time in months, complications, hospital mortality, length of hospital stay, and pathology results (total lymph nodes harvested and pathologic tumor node metastasis stage [p_TNM]) were documented for the different surgical approaches.Results: Open surgical methods were performed in 21 cases, while in 10 cases the Minimally Invasive Surgery (MIS) method was used. The MIS group received neoadjuvant therapy more frequently than the open surgical methods group (p=0.013). Although more complications were observed in the MIS group, the difference to the open esophagectomy methods group was not significant. Patients in the MIS group also had longer hospital stays, but again the difference was not significant. Although a pathologic complete response was seen in 8 of the 11 (72.7%) patients in our study who received chemoradiotherapy as neoadjuvant treatment, the surgical results of patients who received chemoradiotherapy were worse, although not to a statistically significant extent.Conclusion: Despite changing trends and treatment options in esophageal cancer surgery, we have yet to see the expected improved results

    Absolut “copper catalyzation perfected”; robust living polymerization of NIPAM : Guinness is good for SET-LRP

    Get PDF
    The controlled polymerization of N-isopropyl acrylamide (NIPAM) is reported in a range of international beers, wine, ciders and spirits utilizing Cu(0)-mediated living radical polymerization (SET-LRP). Highly active Cu(0) is first formed in situ by the rapid disproportionation of [Cu(I)(Me6-Tren)Br] in the commercial water–alcohol mixtures. Rapid, yet highly controlled, radical polymerization follows (Đ values as low as 1.05) despite the numerous chemicals of diverse functionality present in these solvents e.g. alpha acids, sugars, phenols, terpenoids, flavonoids, tannins, metallo-complexes, anethole etc. The results herein demonstrate the robust nature of the aqueous SET-LRP protocol, underlining its ability to operate efficiently in a wide range of complex chemical environments

    Mannosylated poly(ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants

    Get PDF
    Messenger RNA (mRNA) is a promising platform for both vaccines and therapeutics, and self-amplifying RNA (saRNA) is particularly advantageous, as it enables higher protein expression and dose minimization. Here, we present a delivery platform for targeted delivery of saRNA using mannosylated poly(ethylene imine) (PEI) enabled by the host–guest interaction between cyclodextrin and adamantane. We show that the host–guest complexation does not interfere with the electrostatic interaction with saRNA and observed that increasing the degree of mannosylation inhibited transfection efficiency in vitro, but enhanced the number of cells expressing GFP by 8-fold in human skin explants. Besides, increasing the ratio of glycopolymer to saRNA also enhanced the percentage of transfected cells ex vivo. We identified that these mannosylated PEIs specifically increased protein expression in the epithelial cells resident in human skin in a mannose-dependent manner. This platform is promising for further study of glycosylation of PEI and targeted saRNA delivery

    Glycopolymer code based on well-defined glycopolymers or glyconanomaterials and their biomolecular recognition

    Get PDF
    Advances in the glycopolymer technology have allowed the preparation of more complex and well-defined glycopolymers/particles with several architectures from linear to globular structures (such as micelles, dendrimers, and nanogels). In the last decade, functionalized self-assembled/decided nano-objects and scaffolds containing glycopolymers were designed to develop many biological and biomedical applications in diseases treatments such as pathogen detection, inhibitors of toxins, and lectin-based biosensors. These studies will facilitate the understanding and investigation of the sugar code on the carbohydrate–lectin interactions, which are significantly influenced by the glycopolymer architecture, valency, size, and density of binding elements. In this context, these advanced and selected glycopolymers/particles showing specific interactions with various lectins are highlighted
    corecore