155 research outputs found

    ESR Essentials: imaging in fibrotic lung diseases-practice recommendations by the European Society of Thoracic Imaging

    Get PDF
    Fibrotic lung diseases (FLDs) represent a subgroup of interstitial lung diseases (ILDs), which can progress over time and carry a poor prognosis. Imaging has increased diagnostic discrimination in the evaluation of FLDs. International guidelines have stated the role of radiologists in the diagnosis and management of FLDs, in the context of the interdisciplinary discussion. Chest computed tomography (CT) with high-resolution technique is recommended to correctly recognise signs, patterns, and distribution of individual FLDs. Radiologists may be the first to recognise the presence of previously unknown interstitial lung abnormalities (ILAs) in various settings. A systematic approach to CT images may lead to a non-invasive diagnosis of FLDs. Careful comparison of serial CT exams is crucial in determining either disease progression or supervening complications. This 'Essentials' aims to provide radiologists a concise and practical approach to FLDs, focusing on CT technical requirements, pattern recognition, and assessment of disease progression and complications. Hot topics such as ILAs and progressive pulmonary fibrosis (PPF) are also discussed. KEY POINTS: Chest CT with high-resolution technique is the recommended imaging modality to diagnose pulmonary fibrosis. CT pattern recognition is central for an accurate diagnosis of fibrotic lung diseases (FLDs) by interdisciplinary discussion. Radiologists are to evaluate disease behaviour by accurately comparing serial CT scans

    Integrating Clinical Probability into the Diagnostic Approach to Idiopathic Pulmonary Fibrosis: An International Working Group Perspective

    Get PDF
    Background. When considering the diagnosis of idiopathic pulmonary fibrosis (IPF), experienced clinicians integrate clinical features that help to differentiate IPF from other fibrosing interstitial lung diseases, thus generating a “pre-test” probability of IPF. The aim of this international working group perspective was to summarize these features using a tabulated approach similar to chest HRCT and histopathologic patterns reported in the international guidelines for the diagnosis of IPF, and to help formally incorporate these clinical likelihoods into diagnostic reasoning to facilitate the diagnosis of IPF. Methods. The committee group identified factors that influence the clinical likelihood of a diagnosis of IPF, which was categorized as a pre-test clinical probability of IPF into “high” (70-100%), “intermediate” (30-70%), or “low” (0-30%). After integration of radiological and histopathological features, the post-test probability of diagnosis was categorized into “definite” (90-100%), “high confidence” (70-89%), “low confidence” (51-69%), or “low” (0-50%) probability of IPF. Findings. A conceptual Bayesian framework was created, integrating the clinical likelihood of IPF (“pre-test probability of IPF”) with the HRCT pattern, the histopathology pattern when available, and/or the pattern of observed disease behavior into a “post-test probability of IPF”. The diagnostic probability of IPF was expressed using an adapted diagnostic ontology for fibrotic interstitial lung diseases. Interpretation. The present approach will help incorporate the clinical judgement into the diagnosis of IPF, thus facilitating the application of IPF diagnostic guidelines and, ultimately improving diagnostic confidence and reducing the need for invasive diagnostic techniques

    High-resolution CT phenotypes in pulmonary sarcoidosis: a multinational Delphi consensus study

    Get PDF
    One view of sarcoidosis is that the term covers many different diseases. However, no classification framework exists for the future exploration of pathogenetic pathways, genetic or trigger predilections, patterns of lung function impairment, or treatment separations, or for the development of diagnostic algorithms or relevant outcome measures. We aimed to establish agreement on high-resolution CT (HRCT) phenotypic separations in sarcoidosis to anchor future CT research through a multinational two-round Delphi consensus process. Delphi participants included members of the Fleischner Society and the World Association of Sarcoidosis and other Granulomatous Disorders, as well as members' nominees. 146 individuals (98 chest physicians, 48 thoracic radiologists) from 28 countries took part, 144 of whom completed both Delphi rounds. After rating of 35 Delphi statements on a five-point Likert scale, consensus was achieved for 22 (63%) statements. There was 97% agreement on the existence of distinct HRCT phenotypes, with seven HRCT phenotypes that were categorised by participants as non-fibrotic or likely to be fibrotic. The international consensus reached in this Delphi exercise justifies the formulation of a CT classification as a basis for the possible definition of separate diseases. Further refinement of phenotypes with rapidly achievable CT studies is now needed to underpin the development of a formal classification of sarcoidosis

    Thoracic Imaging

    Full text link

    Chronic Pulmonary Thromboembolism

    No full text

    Artificial Intelligence-Based Detection of Pulmonary Vascular Disease

    Full text link
    • …
    corecore