59 research outputs found

    Trends in global radiation between 1950 and 2100

    Get PDF
    Abstract This analysis is based on long time series of global radiation with a duration of at least 40 years and the forecasts of global radiation till 2100, based on results of IPCC The future changes are relatively small. On an average the global radiation will decrease slightly. However, in the Mediterranean region the trend is positive (+ 2 -3 % till 2100)

    Ultrafast stamping by combination of synchronized galvanometer scanning with DOE’s or SLM

    Get PDF
    The up-scaling of laser micromachining processes with ultrashort pulses is limited due to heat accumulation and shielding effects. Multi beam scanning represents one of the strategies to overcome this drawback. It is in general realized by combining a diffractive beam splitter with a galvanometer scanner. A full synchronization with the laser repetition rate offers new possibilities with minimum thermal impact. We will demonstrate this by means of a multipulse-drilling on the fly process with a regular 5x5 spot pattern having a spot to spot spacing of 160µm. At a repetition rate of 100 kHz and an average power of 16 W we were able to drill more than 2’300 holes/s in a 10µm thick steel foil. We have further extended this technology with a special light modulator for different periodic spot patterns and more complex intensity distributions

    Milling applications with GHz burst: Investigations concerning the removal rate and machining quality

    Get PDF
    GHz-bursts were reported to be highly efficient for ultra-short pulse laser ablation compared to single pulses. However, most comparisons were made for a drilling process or the machining of dimples. We investigated GHz-bursts (5.4 GHz) on copper, brass, stainless steel, silicon, zirconium oxide, soda-lime glass and sapphire for surface structuring applications. Inconsistent with the published results neither a higher removal rate, nor an improvement in the machining quality in case of the metals and silicon was observed, in the contrary, a tremendous drop in the specific removal rate of 90% for the metals and 60% for silicon, compared to single pulses, was measured when a 25 pulse burst (maximum of laser system) was applied. The situation differs for zirconium oxide, where only a moderate influence was observed and for soda-lime glass and sapphire where the specific removal rate increased by a factor of 2.3 and 6, when the number of pulses per burst were raised from 1 to 25

    Fiber optically integrated cost-effective spectrometer for optical coherence tomography

    Get PDF
    A tilted fiber Bragg grating (TFBG) was integrated as the dispersive element in a high performance biomedical imaging system. The spectrum emitted by the 23 mm long active region of the fiber is projected through custom designed optics consisting of a cylindrical lens for vertical beam collimation and successively by an achromatic doublet onto a linear detector array. High resolution tomograms of biomedical samples were successfully acquired by the frequency domain OCT-system. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 10.2 μm lateral resolution. The miniaturization reduces costs and has the potential to further extend the field of application for OCT-systems in biology, medicine and technology

    Cost-effective optical coherence tomography spectrometer based on a tilted fiber Bragg grating

    Get PDF
    A compact, fiber-based spectrometer for biomedical application utilizing a tilted fiber Bragg grating (TFBG) as integrated dispersive element is demonstrated. Based on a 45° UV-written PS750 TFBG a refractive spectrometer with 2.06 radiant/μm dispersion and a numerical aperture of 0.1 was set up and tested as integrated detector for an optical coherence tomography (OCT) system. Featuring a 23 mm long active region at the fiber the spectrum is projected via a cylindrical lens for vertical beam collimation and focused by an achromatic doublet onto the detector array. Covering 740 nm to 860 nm the spectrometer was optically connected to a broadband white light interferometer and a wide field scan head and electronically to an acquisition and control computer. Tomograms of ophthalmic and dermal samples obtained by the frequency domain OCT-system were obtained achieving 2.84 μm axial and 7.6 μm lateral resolution

    Assessing minipig compact jawbone quality at the microscale

    Get PDF
    Preclinical studies often require animal models for in vivo experiments. Particularly in dental research, pig species are extensively used due to their anatomical similarity to humans. However, there is a considerable knowledge gap on the multiscale morphological and mechanical properties of the miniature pigs’ jawbones, which is crucial for implant studies and a direct comparison to human tissue. In the present work, we demonstrate a multimodal framework to assess the jawbone quantity and quality for a minipig animal model that could be further extended to humans. Three minipig genotypes, commonly used in dental research, were examined: Yucatan, G ̈ottingen, and Sinclair. Three animals per genotype were tested. Cortical bone samples were extracted from the premolar region of the mandible, opposite to the teeth growth. Global morphological, compositional, and mechanical properties were assessed using micro-computed tomography (micro-CT) together with Raman spectroscopy and nano- indentation measurements, averaged over the sample area. Local mineral-mechanical relationships were investigated with the site-matched Raman spectroscopy and micropillar compression tests. For this, a novel femtosecond laser ablation protocol was developed, allowing high-throughput micropillar fabrication and testing without exposure to high vacuum. At the global averaged sample level, bone relative mineralization demonstrated a significant difference between the genotypes, which was not observed from the complementary micro-CT measurements. Moreover, bone hardness measured by nanoindentation showed a positive trend with the relative mineralization. For all genotypes, significant differences between the relative mineralization and elastic properties were more pronounced within the osteonal regions of cortical bone. Site-matched micropillar compression and Raman spectroscopy highlighted the differences between the genotypes’ yield stress and mineral to matrix ratios. The methods used at the global level (averaged over sample area) could be potentially correlated to the medical tools used to assess jawbone toughness and morphology in clinics. On the other hand, the local analysis methods can be applied to quantify compressive bone mechanical properties and their relationship to bone mineralization

    Composition and micromechanical properties of the femoral neck compact bone in relation to patient age, sex and hip fracture occurrence

    Get PDF
    Current clinical methods of bone health assessment depend to a great extent on bone mineral density (BMD) measurements. However, these methods only act as a proxy for bone strength and are often only carried out after the fracture occurs. Besides BMD, composition and tissue-level mechanical properties are expected to affect the whole bone's strength and toughness. While the elastic properties of the bone extracellular matrix (ECM) have been extensively investigated over the past two decades, there is still limited knowledge of the yield properties and their relationship to composition and architecture. In the present study, morphological, compositional and micropillar compression bone data was collected from patients who underwent hip arthroplasty. Femoral neck samples from 42 patients were collected together with anonymous clinical information about age, sex and primary diagnosis (coxarthrosis or hip fracture). The femoral neck cortex from the inferomedial region was analyzed in a site-matched manner using a combination of micromechanical testing (nanoindentation, micropillar compression) together with micro-CT and quantitative polarized Raman spectroscopy for both morphological and compositional characterization. Mechanical properties, as well as the sample-level mineral density, were constant over age. Only compositional properties demonstrate weak dependence on patient age: decreasing mineral to matrix ratio (p = 0.02, R2 = 0.13, 2.6 % per decade) and increasing amide I sub-peak ratio I~1660/I~1683 (p = 0.04, R2 = 0.11, 1.5 % per decade). The patient's sex and diagnosis did not seem to influence investigated bone properties. A clear zonal dependence between interstitial and osteonal cortical zones was observed for compositional and elastic bone properties (p  200). The proposed classification algorithm together with the output database of bone tissue properties can be used for the future comparison of existing methods to evaluate bone quality as well as to form a better understanding of the mechanisms through which bone tissue is affected by aging or disease

    Machining metals and silicon with GHz bursts: Surprising tremendous reduction of the specific removal rate for surface texturing applications

    Get PDF
    Bursts of 230 fs pulses with up to 25 pulses having a time spacing of 180 ps were applied to steel AISI304, copper DHP, brass and silicon in real surface texturing (milling) application by machining squares. The previously reported very high removal rates for GHz bursts could not be confirmed, on the contrary, the specific removal rate tremendously drops down to less than 10% for the metals and 25% for silicon when the number of pulses per burst is increased. This drop is fully in line with shielding effects already observed in case of MHz pulses and double pulse experiments. The increase of the number of pulses per burst directly goes with strongly increased melting effects which are assumed to additionally re-fill the already machined areas in this milling application. Calorimetric experiments show an increasing residual heat with higher number of pulses per burst. Further the removal rates of the GHz bursts directly follow the tendency of single pulses of identical duration. This fosters the hypothesis that in case of metals and silicon only melting and melt ejection lead to the high reported removal rates for GHz bursts in punching applications and that no additional "ablation cooling" effect is taking place

    Benchmarking of different approaches to forecast solar irradiance

    Get PDF
    Ponencia presentada en: 24th European Photovoltaic Solar Energy Conference and Exhibition celebrada del 21-25 de septiembre de 2009 en Hamburgo.Power generation from photovoltaic systems is highly variable due to its dependence on meteorological conditions. An efficient use of this fluctuating energy source requires reliable forecast information for management and operation strategies. Due to the strong increase of solar power generation the prediction of solar yields becomes more and more important. As a consequence, in the last years various research organisations and companies have developed different methods to forecast irradiance as a basis for respective power forecasts. For the end-users of these forecasts it is important that standardized methodology is used when presenting results on the accuracy of a prediction model in order to get a clear idea on the advantages of a specific approach. In this paper we introduce a benchmarking procedure to asses the accuracy of irradiance forecasts and compare different approaches of forecasting. The evaluation shows a strong dependence of the forecast accuracy on the climatic conditions. For Central European stations the relative rmse ranges from 40 % to 60 %, for Spanish stations relative rmse values are in the range of 20 % to 35 %
    corecore