272 research outputs found

    On the observed changes in upper stratospheric and mesospheric temperatures from UARS HALOE

    Get PDF
    Temperature versus pressure or <I>T(p)</I> time series from the Halogen Occultation Experiment (HALOE) of the Upper Atmosphere Research Satellite (UARS) have been extended and re-analyzed for the period of 1991–2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60 S to 60 N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in <I>T(p)</I>. Multiple linear regression (MLR) techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale), and linear trend terms. Plots of the amplitudes and phases for the interannual (QBO and subbiennial) terms are provided. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude; the larger amplitude responses are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 0.5 to 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (−1.5 to −2.0 K/decade), at tropical latitudes of the lower mesosphere (about −0.5 K/decade), and at 2 hPa (of order −1 K/decade). Both the diagnosed solar cycle responses and trends from HALOE for the mid to upper mesosphere at middle latitudes are larger than simulated with most models, perhaps an indication of decadal-scale dynamical forcings that are not being simulated so well

    The atmospheric effects of stratospheric aircraft. Report of the 1992 Models and Measurements Workshop. Volume 3: Special diagnostic studies

    Get PDF
    This Workshop on Stratospheric Models and Measurements (M&M) marks a significant expansion in the history of model intercomparisons. It provides a foundation for establishing the credibility of stratospheric models used in environmental assessments of chlorofluorocarbons, aircraft emissions, and climate-chemistry interactions. The core of the M&M comparisons involves the selection of observations of the current stratosphere (i.e., within the last 15 years): these data are believed to be accurate and representative of certain aspects of stratospheric chemistry and dynamics that the models should be able to simulate

    A diagnostic model for studying daytime urban air quality trends

    Get PDF
    A single cell Eulerian photochemical air quality simulation model was developed and validated for selected days of the 1976 St. Louis Regional Air Pollution Study (RAPS) data sets; parameterizations of variables in the model and validation studies using the model are discussed. Good agreement was obtained between measured and modeled concentrations of NO, CO, and NO2 for all days simulated. The maximum concentration of O3 was also predicted well. Predicted species concentrations were relatively insensitive to small variations in CO and NOx emissions and to the concentrations of species which are entrained as the mixed layer rises

    The Nimbus 7 LIMS (Limb Infrared Monitor of the Stratosphere) water vapor measurements

    Get PDF
    Earth orbital instruments, designed to measure the vertical and spatial distribution of atmospheric water vapor is discussed. Specifically, the operation of the Limb Infrared Monitor of the Stratosphere (LIMS) experiment is examined. The LIMS is a six channel limb scanning radiometer that was launched aboard Nimbus 7 in 1978. Profiles of stratospheric and mesospheric temperature, water vapor, and various other constituents were obtained by inverting the LIMS radiance measurements. This same technique was used in 1981 to analyze the data returned from another limb scanning radiometer aboard the Solar Mesosphere Explorer

    Decadal-Scale Responses in Middle and Upper Stratospheric Ozone From SAGE II Version 7 Data

    Get PDF
    Stratospheric Aerosol and Gas Experiment (SAGE II) version 7 (v7) ozone profiles are analyzed for their decadal-scale responses in the middle and upper stratosphere for 1991 and 1992-2005 and compared with those from its previous version 6.2 (v6.2). Multiple linear regression (MLR) analysis is applied to time series of its ozone number density vs. altitude data for a range of latitudes and altitudes. The MLR models that are fit to the time series data include a periodic 11 yr term, and it is in-phase with that of the 11 yr, solar UV (Ultraviolet)-flux throughout most of the latitude/ altitude domain of the middle and upper stratosphere. Several regions that have a response that is not quite in-phase are interpreted as being affected by decadal-scale, dynamical forcings. The maximum minus minimum, solar cycle (SClike) responses for the ozone at the low latitudes are similar from the two SAGE II data versions and vary from about 5 to 2.5% from 35 to 50 km, although they are resolved better with v7. SAGE II v7 ozone is also analyzed for 1984-1998, in order to mitigate effects of end-point anomalies that bias its ozone in 1991 and the analyzed results for 1991-2005 or following the Pinatubo eruption. Its SC-like ozone response in the upper stratosphere is of the order of 4%for 1984-1998 vs. 2.5 to 3%for 1991-2005. The SAGE II v7 results are also recompared with the responses in ozone from the Halogen Occultation Experiment (HALOE) that are in terms of mixing ratio vs. pressure for 1991-2005 and then for late 1992- 2005 to avoid any effects following Pinatubo. Shapes of their respective response profiles agree very well for 1992-2005. The associated linear trends of the ozone are not as negative in 1992-2005 as in 1984-1998, in accord with a leveling off of the effects of reactive chlorine on ozone. It is concluded that the SAGE II v7 ozone yields SC-like ozone responses and trends that are of better quality than those from v6.2

    Lidar backscattering measurements of background stratospheric aerosols

    Get PDF
    A comparative lidar-dustsonde experiment was conducted in San Angelo, Texas, in May 1974 in order to estimate the uncertainties in stratospheric-aerosol backscatter for the NASA Langley 48-inch lidar system. The lidar calibration and data-analysis procedures are discussed. Results from the Texas experiment indicate random and systematic uncertainties of 35 and 63 percent, respectively, in backscatter from a background stratospheric-aerosol layer at 20 km

    Stratospheric models and measurements: A critical comparison

    Get PDF
    The stated objectives of the High Speed Research Program/Atmospheric Effects of Stratospheric Aircraft (AESA) initiative are to support research in the atmospheric sciences that will improve the basic understanding of the circulation and chemistry of the stratosphere and lead to interim assessments of the impact of a projected fleet of HSCT's on the stratosphere. Three model comparison workshops have been conducted, so far, in support of this goal. These workshops have been focused on the differences between models used to calculate the atmospheric effects of the proposed aircraft emissions. It is now possible to test these models against atmospheric data

    On the Observed Changes in Upper Stratospheric and Mesospheric Temperatures from UARS HALOE

    Get PDF
    Temperature versus pressure or T(p) time series from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) have been extended and re-analyzed for the period of 1991-2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60S to 60N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in T(p). Multiple linear regression (MLR) techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale), and linear trend terms. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude, and in almost all cases they are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (about -2 K/decade), at tropical latitudes of the middle mesosphere (about -1 K/decade), and at 2 hPa (or order -1 K/decade)

    An interim reference model for the variability of the middle atmosphere H2O vapor distribution

    Get PDF
    Water vapor is an important minor constituent in the studies of the middle atmosphere for a variety of reasons, including its role as a source for active HO(y) chemicals and its use in analysis of transport processes. A number of in situ and remote techniques were employed in the determination of water vapor distributions. Two of the more complete data sets were used to develop an interim reference profile. First, there are the seven months of Nimbus 7 limb infrared monitor of the stratosphere (LIMS) data obtained during Nov. 1978 to May 1979 over the range 64S to 84N latitude and from about 100 to 1 mb in the mid-mesosphere at several fixed Northern Hemisphere mid-latitude sites. These two data sets were combined to give a mid-lattitude, interim reference water vapor profile for the entire vertical range of the middle atmosphere and with accuracies of better than 25 percent. The daily variability of stratospheric water vapor profiles about the monthly mean was also established from these data sets for selected months. Information is also provided on the longitudinal variability of LIMS water vapor profiles about the daily, weekly, and monthly zonal means. Generally, the interim reference water vapor profile and its variability are consistent with prevailing ideas about chemistry and transport

    NASA participation in the 1980 PEPE/NEROS project: Data archive

    Get PDF
    Eight experimental air quality measurement systems were investigated during July and August 1980 as part of the EPA PEPE/NEROS fiel measurement program. Data from those efforts have been entered into an archive that may be accessed by other researchers. The data sets consists of airborne measurements of regional mixed layer heights and aerosol and ozone distributions as well as point measurements of meteorological parameters and ozone obtained during diurnal transitions in the planetary boundary layer. This report gives a discussion of each measurement system, a preliminary assessment of data quality, a description of the archive format for each data set, and a summary of several proposed scientific studies which will utilize these data
    corecore