20 research outputs found

    Molecular Characterization of Copper and Cadmium Resistance Determinants in the Biomining Thermoacidophilic Archaeon Sulfolobus metallicus

    Get PDF
    Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining

    Life at the extreme: Plant-driven hotspots of soil nutrient cycling in the hyper-arid core of the Atacama Desert

    Get PDF
    The hyperarid core of the Atacama Desert represents one of the most intense environments on Earth, often being used as an analog for Mars regolith. The area is characterized by extremes in climate (e.g., temperature, humidity, UV irradiation) and edaphic factors (e.g., hyper-salinity, high pH, compaction, high perchlorates, and low moisture, phosphorus and organic matter). However, the halophytic C4 plant Distichlis spicata appears to be one of the few species on the planet that can thrive in this environment. Within this habitat it captures windblown sand leading to the formation of unique structures and the generation of above-ground phyllosphere soil. Using a combination of approaches (e.g., X-ray Computed Tomography, TXRF, δ13C/δ15N isotope profiling, microbial PLFAs, 14C turnover, phosphate sorption isotherms) we examined the factors regulating the biogeochemical cycling of nitrogen (N), phosphorus (P) and carbon (C) in both vegetated and unvegetated areas. Our results showed that D. spicata rhizomes with large aerenchyma were able to break through the highly cemented topsoil layer leading to root proliferation in the underlying soil. The presence of roots increased soil water content, P availability and induced a change in microbial community structure and promoted microbial growth and activity. In contrast, soil in the phyllosphere exhibited almost no biological activity. Organic C stocks and recent C4 plant derived input increased as follows: phyllosphere (1941 g C m−2; 85% recent) > soils under plants (575–748 g C m−2; 55–60%) > bare soils (491–642 g C m−2; 9–17%). Due to the high levels of nitrate in soil (>2 t ha−1) and high rates of P sorption/precipitation, our data suggest that the microbial activity is both C and P, but not N limited. Root-mediated salt uptake combined with foliar excretion and dispersal of NaCl into the surrounding area indicated that D. spicata was responsible for actively removing ca. 55% of the salt from the rhizosphere. We also demonstrate that NH3 emissions may represent a major N loss pathway from these soil ecosystems during the processing of organic N. We attribute this to NH3 volatilization to the high pH of the soil and slow rates of nitrification. In conclusion, we demonstrate that the extremophile D. spicata physically, chemically and biologically reengineers the soil to create a highly bioactive hotspot within the climate-extreme of the Atacama Desert

    Characterization and low-cost treatment of an industrial arid soil polluted with lead sulfide in northern Chile

    No full text
    Lead (Pb) dust exposure can have detrimental environmental and human health effects. Improperly enclosed stockpiles of Pb concentrates can cause dust emissions, subsequent pollution of the soil and environmental risk. The aim of this work was to study Pb form, distribution and immobilization (by using eggshell and seashell) in an industrial arid soil near a storage area of Pb mineral concentrates in northern Chile. High amounts of sulfur (S; 9900 mg kg−1) and Pb (6530 mg kg−1) were found in the polluted soil. The energy-dispersive X-ray spectroscopy analysis revealed a lead sulfide (PbS: galena). Metallic Pb particles, which were between 41 and 46 µm, were identified in the soil. After eggshell and seashell (20%) were applied, the soil pH increased from 6.0 to 7.84 and 8.07, respectively. In the studied soil, the leaching test showed a 59 mg L−1 average Pb extractable concentration. After 240 days, extractable Pb by toxicity characteristics leaching procedure decreased to 4.79 mg L−1 (93.3%) with the application of seashell at 20% compared with a decrease of 33.33 mg L−1 (53.6%) using eggshell. Pb in the polluted soil was mainly found in the exchangeable fraction (66%), followed by the reducible (24%), residual (7%) and oxidizable (6%) fractions. According to the risk assessment code, the contaminated soil before treatment was classified as very high risk. Adding eggshell (20%) and seashell (20%) decreased the exchangeable fractions to 39 and 35%, respectively. Applying these liming materials achieved Pb immobilization in the soil, but the soil remained in the high environmental risk category. We conclude that the application of seashell waste, resulting from high aquaculture activity, opens an interesting window to the treatment of contaminated arid soils

    Sulfur Oxygenase Reductase (Sor) in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    No full text
    The sulfur oxygenase reductase (Sor) catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr) gene cluster, three tetrathionate hydrolase (tth) genes, three sulfide quinonereductase (sqr), as well as the doxD component of a thiosulfate quinonereductase (tqo) were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant

    Comparison of Public Perception in Desert and Rainy Regions of Chile Regarding the Reuse of Treated Sewage Water

    No full text
    The objective of this study was to compare the public perception in desert and rainy regions of Chile regarding the reuse of treated sewage water. The methodology of this study consisted of applying a survey to the communities of San Pedro de Atacama (desert region) and Hualqui (rainy region) to identify attitudes about the reuse of sewage water. The survey was applied directly to men and women, 18 to 90 years old, who were living in the studied communities. The results indicate that inhabitants of San Pedro de Atacama (desert region) were aware of the state of their water resources, with 86% being aware that there are water shortages during some part of the year. In contrast, only 55% of residents in Hualqui (rainy region) were aware of water shortages. With respect of the reuse of treated sewage water, 47% of respondents in San Pedro de Atacama understood the concept, as compared to 27% in Hualqui. There was more acceptance of using treated sewage water for non-potable purposes than as drinking water

    The ecological coherence of temperature and salinity tolerance interaction and pigmentation in a non-marine vibrio isolated from Salar de Atacama

    No full text
    The occurrence of microorganisms from the Vibrio genus in saline lakes from northern Chile had been evidenced using Numerical Taxonomy decades before and, more recently, by phylogenetic analyses of environmental samples and isolates. Most of the knowledge about this genus came from marine isolates and showed temperature and salinity to be integral agents in shaping the niche of the Vibrio populations. The stress tolerance phenotypes of Vibrio sp. Teb5a1 isolated from Salar de Atacama was investigated. It was able to grow without NaCl and tolerated up to 100 g/L of the salt. Furthermore, it grew between 17° and 49°C (optimum 30°C) in the absence of NaCl, and the range was expanded into cold temperature (4-49°C) in the presence of the salt. Other additional adaptive strategies were observed in response to the osmotic stress: pigment production, identified as the known antibacterial prodigiosin, swimming and swarming motility and synthesis of a polar flagellum. It is possible to infer that environmental congruence might explain the cellular phenotypes observed in Vibrio sp. considering that coupling between temperature and salinity tolerance, the production of antibacterial agents at higher temperatures, flagellation and motility increase the chance of Vibrio sp. to survive in salty environments with high daily temperature swings and UV radiation

    Characterization and salt response in recurrent halotolerant exiguobacteriumsp. SH31 isolated from sediments of salar de huasco, chilean altiplano

    Get PDF
    © 2007-2018 Frontiers Media S.A. All Rights Reserved. Poly-extremophiles microorganisms have the capacity to inhabit hostile environments and can survive several adverse conditions that include as variations in temperature, pH, and salinity, high levels UV light and atmospheric pressure, and even the presence of toxic compounds and the formation of reactive oxygen species (ROS). A halotolerant Exiguobacterium strain was isolated from Salar de Huasco (Chilean Altiplano), a well-known shallow lake area with variable salinity levels, little human intervention, and extreme environmental conditions, which makes it ideal for the study of resistant mechanisms and the evolution of adaptations. This bacterial genus has not been extensively studied, although its cosmopolitan location indicates that it has high levels of plasticity and adaptive capacity. However, to date, there are no studies regarding the tolerance and resistance to salinity and osmotic pressure. We set out to characterize the

    Arsenopyrite Dissolution and Bioscorodite Precipitation by Acidithiobacillus ferrivorans ACH under Mesophilic Condition

    No full text
    Arsenopyrite is the most abundant arsenic-bearing sulfide mineral in the lithosphere, usually associated with sulfide gold ores. The recovery of this highly valuable metal is associated with the release of large quantities of soluble arsenic. One way to mitigate the effects of high concentrations of arsenic in solution is to immobilize it as scorodite precipitate, a more stable form. Hence, we addressed the scorodite formation capacity (under mesophilic conditions) of psychrotolerant Acidithiobacillus ferrivorans ACH isolated from the Chilean Altiplano. Bio-oxidation assays were performed with 1% arsenopyrite concentrate as unique energy source and produced solids were evaluated by X-ray diffraction (XRD) and QEMSCAN analysis. Interestingly, the results evidenced scorodite generation as the main sub-product after incubation for 15 days, due to the presence of the microorganism. Moreover, the QEMSCAN analysis support the XRD, detecting a 3.5% increase in scorodite generation by ACH strain and a 18.7% decrease in arsenopyrite matrix, implying an active oxidation. Finally, we presented the first record of arsenopyrite oxidation capacity and the stable scorodite production ability by a member of A. ferrivorans species under mesophilic conditions
    corecore