152 research outputs found

    The Mineral metabolism of the milch cow

    Get PDF

    Phasespace Correlations of Antideuterons in Heavy Ion Collisions

    Get PDF
    In the framework of the relativistic quantum molecular dynamics approach ({\small RQMD}) we investigate antideuteron (d\overline{d}) observables in Au+Au collisions at 10.7~AGeV. The impact parameter dependence of the formation ratios d/p2\overline{d}/\overline{p}^2 and d/p2{d}/{p}^2 is calculated. In central collisions, the antideuteron formation ratio is predicted to be two orders of magnitude lower than the deuteron formation ratio. The d\overline{d} yield in central Au+Au collisions is one order of magnitude lower than in Si+Al collisions. In semicentral collisions different configuration space distributions of p\overline{p}'s and d\overline{d}'s lead to a large ``squeeze--out'' effect for antideuterons, which is not predicted for the p\overline{p}'s

    Modeling Cluster Production at the AGS

    Get PDF
    Deuteron coalescence, during relativistic nucleus-nucleus collisions, is carried out in a model incorporating a minimal quantal treatment of the formation of the cluster from its individual nucleons by evaluating the overlap of intial cascading nucleon wave packets with the final deuteron wave function. In one approach the nucleon and deuteron center of mass wave packet sizes are estimated dynamically for each coalescing pair using its past light-cone history in the underlying cascade, a procedure which yields a parameter free determination of the cluster yield. A modified version employing a global estimate of the deuteron formation probability, is identical to a general implementation of the Wigner function formalism but can differ from the most frequent realisation of the latter. Comparison is made both with the extensive existing E802 data for Si+Au at 14.6 GeV/c and with the Wigner formalism. A globally consistent picture of the Si+Au measurements is achieved. In light of the deuteron's evident fragility, information obtained from this analysis may be useful in establishing freeze-out volumes and help in heralding the presence of high-density phenomena in a baryon-rich environment.Comment: 31 pages REVTeX, 19 figures (4 oversized included as JPEG). For full postscript figures (LARGE): contact [email protected]

    Population Monte Carlo algorithms

    Full text link
    We give a cross-disciplinary survey on ``population'' Monte Carlo algorithms. In these algorithms, a set of ``walkers'' or ``particles'' is used as a representation of a high-dimensional vector. The computation is carried out by a random walk and split/deletion of these objects. The algorithms are developed in various fields in physics and statistical sciences and called by lots of different terms -- ``quantum Monte Carlo'', ``transfer-matrix Monte Carlo'', ``Monte Carlo filter (particle filter)'',``sequential Monte Carlo'' and ``PERM'' etc. Here we discuss them in a coherent framework. We also touch on related algorithms -- genetic algorithms and annealed importance sampling.Comment: Title is changed (Population-based Monte Carlo -> Population Monte Carlo). A number of small but important corrections and additions. References are also added. Original Version is read at 2000 Workshop on Information-Based Induction Sciences (July 17-18, 2000, Syuzenji, Shizuoka, Japan). No figure

    Ab initio molecular dynamics using density based energy functionals: application to ground state geometries of some small clusters

    Get PDF
    The ground state geometries of some small clusters have been obtained via ab initio molecular dynamical simulations by employing density based energy functionals. The approximate kinetic energy functionals that have been employed are the standard Thomas-Fermi (TTF)(T_{TF}) along with the Weizsacker correction TWT_W and a combination F(Ne)TTF+TWF(N_e)T_{TF} + T_W. It is shown that the functional involving F(Ne)F(N_e) gives superior charge densities and bondlengths over the standard functional. Apart from dimers and trimers of Na, Mg, Al, Li, Si, equilibrium geometries for LinAl,n=1,8Li_nAl, n=1,8 and Al13Al_{13} clusters have also been reported. For all the clusters investigated, the method yields the ground state geometries with the correct symmetries with bondlengths within 5\% when compared with the corresponding results obtained via full orbital based Kohn-Sham method. The method is fast and a promising one to study the ground state geometries of large clusters.Comment: 15 pages, 3 PS figure

    Out of Equilibrium Thermal Field Theories - Finite Time after Switching on the Interaction - Wigner Transforms of Projected Functions

    Get PDF
    We study out of equilibrium thermal field theories with switching on the interaction occurring at finite time using the Wigner transforms (in relative space-time) of two-point functions. For two-point functions we define the concept of projected function: it is zero if any of times refers to the time before switching on the interaction, otherwise it depends only on the relative coordinates. This definition includes bare propagators, one-loop self-energies, etc. For the infinite-average-time limit of the Wigner transforms of projected functions we define the analyticity assumptions: (1) The function of energy is analytic above (below) the real axis. (2) The function goes to zero as the absolute value of energy approaches infinity in the upper (lower) semiplane. Without use of the gradient expansion, we obtain the convolution product of projected functions. We sum the Schwinger-Dyson series in closed form. In the calculation of the Keldysh component (both, resummed and single self-energy insertion approximation) contributions appear which are not the Wigner transforms of projected functions, signaling the limitations of the method. In the Feynman diagrams there is no explicit energy conservation at vertices, there is an overall energy-smearing factor taking care of the uncertainty relations. The relation between the theories with the Keldysh time path and with the finite time path enables one to rederive the results, such as the cancellation of pinching, collinear, and infrared singularities, hard thermal loop resummation, etc.Comment: 23 pages + 1 figure, Latex, corrected version, improved presentation, version accepted for publication in Phys. Rev.

    Effect of hydrogen on ground state structures of small silicon clusters

    Full text link
    We present results for ground state structures of small Sin_{n}H (2 \leq \emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In particular, we focus on how the addition of a hydrogen atom affects the ground state geometry, total energy and the first excited electronic level gap of an Sin_{n} cluster. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen bonds with two silicon atoms only in Si2_{2}H, Si3_{3}H and Si5_{5}H clusters, while in other clusters (i.e. Si4_{4}H, Si6_{6}H, Si7_{7}H, Si8_{8}H, Si9_{9}H and Si10_{10}H) hydrogen is bonded to only one silicon atom. Also in the case of a compact and closed silicon cluster hydrogen bonds to the cluster from outside. We find that the first excited electronic level gap of Sin_{n} and Sin_{n}H fluctuates as a function of size and this may provide a first principles basis for the short-range potential fluctuations in hydrogenated amorphous silicon. Our results show that the addition of a single hydrogen can cause large changes in the electronic structure of a silicon cluster, though the geometry is not much affected. Our calculation of the lowest energy fragmentation products of Sin_{n}H clusters shows that hydrogen is easily removed from Sin_{n}H clusters.Comment: one latex file named script.tex including table and figure caption. Six postscript figure files. figure_1a.ps and figure_1b.ps are files representing Fig. 1 in the main tex

    Quantum Tunneling in the Wigner Representation

    Get PDF
    Time dependence for barrier penetration is considered in the phase space. An asymptotic phase-space propagator for nonrelativistic scattering on a one - dimensional barrier is constructed. The propagator has a form universal for various initial state preparations and local potential barriers. It is manifestly causal and includes time-lag effects and quantum spreading. Specific features of quantum dynamics which disappear in the standard semi-classical approximation are revealed. The propagator may be applied to calculation of the final momentum and coordinate distributions, for particles transmitted through or reflected from the potential barrier, as well as for elucidating the tunneling time problem.Comment: 18 pages, LATEX, no figure

    Nuclear Clusters as a Probe for Expansion Flow in Heavy Ion Reactions at 10-15AGeV

    Get PDF
    A phase space coalescence description based on the Wigner-function method for cluster formation in relativistic nucleus-nucleus collisions is presented. The momentum distributions of nuclear clusters d,t and He are predicted for central Au(11.6AGeV)Au and Si(14.6AGeV)Si reactions in the framework of the RQMD transport approach. Transverse expansion leads to a strong shoulder-arm shape and different inverse slope parameters in the transverse spectra of nuclear clusters deviating markedly from thermal distributions. A clear ``bounce-off'' event shape is seen: the averaged transverse flow velocities in the reaction plane are for clusters larger than for protons. The cluster yields --particularly at low ptp_t at midrapidities-- and the in-plane (anti)flow of clusters and pions change if suitably strong baryon potential interactions are included. This allows to study the transient pressure at high density via the event shape analysis of nucleons, nucleon clusters and other hadrons.Comment: 38 pages, 9 figures, LaTeX type, eps used, subm. to Phys. Rev.
    corecore