6 research outputs found

    Many-body synchronization of interacting qubits by engineered ac-driving

    Full text link
    In this work we introduce the many-body synchronization of an interacting qubit ensemble which allows one to switch dynamically from many-body-localized (MBL) to an ergodic state. We show that applying of π\pi-pulses with altering phases, one can effectively suppress the MBL phase and, hence, eliminate qubits disorder. The findings are based on the analysis of the Loschmidt echo dynamics which shows a transition from a power-law decay to more rapid one indicating the dynamical MBL-to-ergodic transition. The technique does not require to know the microscopic details of the disorder.Comment: 5 pages, 4 figure

    Cavity-QED simulation of a quantum metamaterial with tunable disorder

    Get PDF
    We explore experimentally a quantum metamaterial based on a superconducting chip with 25 frequency-tunable transmon qubits coupled to a common coplanar resonator. The collective bright and dark modes are probed via the microwave response, i.e., by measuring the transmission amplitude of an external microwave signal. All qubits have individual control and readout lines. Their frequency tunability allows to change the number N of resonantly coupled qubits and also to introduce a disorder in their excitation frequencies with preassigned distributions. While increasing N, we demonstrate the expected N1/2^{1/2} scaling law for the energy gap (Rabi splitting) between bright modes around the cavity frequency. By introducing a controllable disorder and averaging the transmission amplitude over a large number of realizations, we demonstrate a decay of mesoscopic fluctuations which mimics an approach towards the thermodynamic limit. The collective bright states survive in the presence of disorder when the strength of individual qubit coupling to the cavity dominates over the disorder strength

    Synchronization of qubit ensembles under optimized π

    No full text
    corecore