21 research outputs found

    Видатний український історик-музикознавець (М. О. Грінченко)

    Get PDF
    У статті розкриваються основні віхи життєвого й творчого шляху М. О. Грінченка. Характеризуються провідні тенденції еволюції українського музикознавства другої половини ХIХ – першої третини ХХ ст. Виявляється роль музично-історичної спадщини вченого в тогочасному музикознавчому процесі, а також її зв’язки з музично-історичними дослідженнями наступних радянських десятиліть, сучасного періоду.В статье раскрываются основне вехи жизненного и творческого пути Н. А. Гринченко. Характеризуються ведущие тенденции эволюции украинского музыковедения второй половины ХIХ – первой трети ХХ в. Выявляется роль музыкально-исторического наследия ученого в контексте музыковедческого процесса того времени, а также его связи с музыкально-историческими исследованиями последующих советских десятилетий, современного периода.In the article main events of the outstanding Ukrainian musicologist M. Grinchenko`s life are considered. There are characterized tendencies of the Ukrainian musicology development (the latter half of the 19th – the 1st triens of the 20th). There is brought out the role of scientific works by M. Grinchenko in the context of that time

    Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice

    Get PDF
    Senescent cells (SCs) accumulate with age and after genotoxic stress, such as total-body irradiation (TBI)1–6. Clearance of SCs in a progeroid mouse model using a transgenic approach delays several age-associated disorders7, suggesting that SCs play a causative role in certain age-related pathologies. Thus, a ‘senolytic’ pharmacological agent that can selectively kill SCs holds promise for rejuvenating tissue stem cells and extending health span. To test this idea, we screened a collection of compounds and identified ABT263 (a specific inhibitor of the anti-apoptotic proteins BCL-2 and BCL-xL) as a potent senolytic drug. We show that ABT263 selectively kills SCs in culture in a cell type– and species-independent manner by inducing apoptosis. Oral administration of ABT263 to either sublethally irradiated or normally aged mice effectively depleted SCs, including senescent bone marrow hematopoietic stem cells (HSCs) and senescent muscle stem cells (MuSCs). Notably, this depletion mitigated TBI-induced premature aging of the hematopoietic system and rejuvenated the aged HSCs and MuSCs in normally aged mice. Our results demonstrate that selective clearance of SCs by a pharmacological agent is beneficial in part through its rejuvenation of aged tissue stem cells. Thus, senolytic drugs may represent a new class of radiation mitigators and anti-aging agents

    p21 produces a bioactive secretome that places stressed cells under immunosurveillance

    Get PDF
    Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)-dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress

    Animal models of age-related disorders and age-sensitive traits associated with senescence-inducing stimuli and uses thereof

    No full text
    This disclosure provides non-human animal models for age-related disorders and age-sensitive traits, particularly those caused by senescence-inducing stimuli, wherein the models comprise transgenes selectively expressed by senescent cells. The disclosure further provides methods for identifying therapeutic agents effective for treating or preventing age-related disorders and age-sensitive traits using the animal models, therapeutic agents identified using such methods, pharmaceutical compositions comprising the identified therapeutic agents, and methods of treating or preventing age-related disorders and age-sensitive traits

    Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing

    No full text
    DNA damage has been implicated in ageing, but direct evidence for a causal relationship is lacking, owing to the difficulty of inducing defined DNA lesions in cells and tissues without simultaneously damaging other biomolecules and cellular structures. Here we directly test whether highly toxic DNA double-strand breaks (DSBs) alone can drive an ageing phenotype using an adenovirus-based system based on tetracycline-controlled expression of the SacI restriction enzyme. We deliver the adenovirus to mice and compare molecular and cellular end points in the liver with normally aged animals. Treated, 3-month-old mice display many, but not all signs of normal liver ageing as early as 1 month after treatment, including ageing pathologies, markers of senescence, fused mitochondria and alterations in gene expression profiles. These results, showing that DSBs alone can cause distinct ageing phenotypes in mouse liver, provide new insights in the role of DNA damage as a driver of tissue ageing

    Cdkn1a transcript variant 2 is a marker of aging and cellular senescence.

    No full text
    Cellular senescence is a cell fate response characterized by a permanent cell cycle arrest driven primarily the by cell cycle inhibitor and tumor suppressor proteins p16Ink4a and p21Cip1/Waf1. In mice, the p21Cip1/Waf1 encoding locus, Cdkn1a, is known to generate two transcripts that produce identical proteins, but one of these transcript variants is poorly characterized. We show that the Cdkn1a transcript variant 2, but not the better-studied variant 1, is selectively elevated during natural aging across multiple mouse tissues. Importantly, mouse cells induced to senescence in culture by genotoxic stress (ionizing radiation or doxorubicin) upregulated both transcripts, but with different temporal dynamics: variant 1 responded nearly immediately to genotoxic stress, whereas variant 2 increased much more slowly as cells acquired senescent characteristics. Upon treating mice systemically with doxorubicin, which induces widespread cellular senescence in vivo, variant 2 increased to a larger extent than variant 1. Variant 2 levels were also more sensitive to the senolytic drug ABT-263 in naturally aged mice. Thus, variant 2 is a novel and more sensitive marker than variant 1 or total p21Cip1/Waf1 protein for assessing the senescent cell burden and clearance in mice

    Oxidation resistance 1 is a novel senolytic target.

    No full text
    The selective depletion of senescent cells (SCs) by small molecules, termed senolytic agents, is a promising therapeutic approach for treating age-related diseases and chemotherapy- and radiotherapy-induced side effects. Piperlongumine (PL) was recently identified as a novel senolytic agent. However, its mechanism of action and molecular targets in SCs was unknown and thus was investigated. Specifically, we used a PL-based chemical probe to pull-down PL-binding proteins from live cells and then mass spectrometry-based proteomic analysis to identify potential molecular targets of PL in SCs. One prominent target was oxidation resistance 1 (OXR1), an important antioxidant protein that regulates the expression of a variety of antioxidant enzymes. We found that OXR1 was upregulated in senescent human WI38 fibroblasts. PL bound to OXR1 directly and induced its degradation through the ubiquitin-proteasome system in an SC-specific manner. The knockdown of OXR1 expression by RNA interference significantly increased the production of reactive oxygen species in SCs in conjunction with the downregulation of antioxidant enzymes such as heme oxygenase 1, glutathione peroxidase 2, and catalase, but these effects were much less significant when OXR1 was knocked down in non-SCs. More importantly, knocking down OXR1 selectively induced apoptosis in SCs and sensitized the cells to oxidative stress caused by hydrogen peroxide. These findings provide new insights into the mechanism by which SCs are highly resistant to oxidative stress and suggest that OXR1 is a novel senolytic target that can be further exploited for the development of new senolytic agents
    corecore