61 research outputs found
A Frameshift in CSF2RB Predominant Among Ashkenazi Jews Increases Risk for Crohn's Disease and Reduces Monocyte Signaling via GMCSF
BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome-sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony stimulating factor 2 receptor beta common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and GMCSF-responsive cells were defined by mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P=8.52x10-4); the finding was validated in the replication cohort (combined P=3.42x10-6). Incubation of intestinal lamina propria leukocytes with GMCSF resulted in high levels of phosphorylation of STAT5 and lesser increases in phosphorylation of ERK and AKT. Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 following stimulation with GMCSF, compared to cells transfected with control CSF2RB, indicating a dominant negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to GMCSF and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to GMCSF, providing an additional mechanism for alterations to the innate immune response in individuals with CD
Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer
Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors1,2, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies
Multiplexed Immunohistochemical Consecutive Staining on Single Slide (MICSSS): Multiplexed Chromogenic IHC Assay for High-Dimensional Tissue Analysis
Disease states and cellular compartments can display a remarkable amount of heterogeneity, and truly appreciating this heterogeneity requires the ability to detect and probe each subpopulation present. A myriad of recent single-cell assays has allowed for in-depth analysis of these diverse cellular populations; however, fully understanding the interplay between each cell type requires knowledge not only of their mere presence but also of their spatial organization and their relation one to the other. Immunohistochemistry allows for the visualization of cells and tissue; however, standard techniques only allow for the use of very few probes on a single specimen, not allowing for in-depth analysis of complex cellular heterogeneity. A number of multiplex imaging techniques, such as immunofluorescence and multiplex immunohistochemistry, have been proposed to allow probing more cellular markers at once; however, many of these techniques still have their limitations. The use of fluorescent markers has an inherent limitation to the number of probes that can be simultaneously used due to spectral overlap. Moreover, other proposed multiplex IHC methods are time-consuming and require expensive reagents. Still, many of the methods rely on frozen tissue, which deviates from standards in human pathological evaluation. Here, we describe a multiplex IHC technique, staining for consecutive markers on a single slide, which utilizes similar steps and similar reagents as standard IHC, thus making it possible for any lab with standard IHC capabilities to perform this useful procedure. This method has been validated and confirmed that consecutive markers can be stained without the risk of cross-reactivity between staining cycles. Furthermore, we have validated that this technique does not lead to decreased antigenicity of subsequent epitopes probed, nor does it lead to steric hindrance
MAGE expression in head and neck squamous cell carcinoma primary tumors, lymph node metastases and respective recurrences-implications for immunotherapy
Item does not contain fulltextMelanoma associated antigens (MAGE) are potential targets for immunotherapy and have been associated with poor overall survival (OS) in head and neck squamous cell carcinoma (HNSCC). However, little is known about MAGE in lymph node metastases (LNM) and recurrent disease (RD) of HNSCC.To assess whether MAGE expression increases with metastasis or recurrence, a tissue microarray (TMA) of 552 primary tumors (PT), 219 LNM and 75 RD was evaluated by immunohistochemistry for MAGE antigens using three monoclonal antibodies to multiple MAGE family members. Mean expression intensity (MEI) was obtained from triplicates of each tumor specimen.The median MEI compared between PT, LNM and RD was significantly higher in LNM and RD. In paired samples, MEI was comparable in PT to respective LNM, but significantly different from RD. Up to 25% of patients were negative for pan-MAGE or MAGE-A3/A4 in PT, but positive in RD. The prognostic impact of MAGE expression was validated in the TMA cohort and also in TCGA data (mRNA). OS was significantly lower for patients expressing pan-MAGE or MAGE-A3/A4 in both independent cohorts.MAGE expression was confirmed as a prognostic marker in HNSCC and may be important for immunotherapeutic strategies as a shared antigen
- âŠ