134 research outputs found

    Circulating Leukotriene B4 Identifies Respiratory Complications after Trauma

    Get PDF
    Background. Leukotriene B4 (LTB4), a proinflammatory lipid mediator correlates well with the acute phase of Acute Respiratory Distress Syndrome (ARDS). Therefore, LTB4-levels were investigated to determine whether they might be a useful clinical marker in predicting pulmonary complications (PC) in multiply traumatized patients. Methods: Plasma levels of LTB4 were determined in 100 patients on admission (ED) and for five consecutive days (daily). Twenty healthy volunteers served as control. LTB4-levels were measured by ELISA. Thirty patients developed PC (pneumonia, respiratory failure, acute lung injury (ALI), ARDS, pulmonary embolism) and 70 had no PC (ØPC). Results. LTB4-levels in the PC-group [127.8 pg/mL, IQR: 104–200pg/ml] were significantly higher compared to the ØPC-group on admission [95.6 pg/mL, IQR: 55–143 pg/mL] or control-group [58.4 pg/mL, IQR: 36–108 pg/mL]. LTB4 continuously declined to basal levels from day 1 to 5 without differences between the groups. The cutoff to predict PC was calculated at 109.6 pg/mL (72% specificity, 67% sensitivity). LTB4 was not influenced by overall or chest injury severity, age, gender or massive transfusion. Patients with PC received mechanical ventilation for a significantly longer period of time, and had prolonged intensive care unit and overall hospital stay. Conclusion. High LTB4-levels indicate risk for PC development in multiply traumatized patients

    Effects of green tea catechins on the pro-inflammatory response after haemorrhage/resuscitation in rats

    Get PDF
    Plant polyphenols, i.e. green tea extract (GTE), possess high antioxidative and anti-inflammatory capacity, thus being protective in various models of acute inflammation. However, their anti-inflammatory effect and a feasible mechanism in haemorrhage/resuscitation (H/R)-induced liver injury remain unknown. We investigated the effects of GTE and the role of NF-κB in the pathogenesis of liver injury induced by H/R, and their effects on intercellular adhesion molecule-1 (ICAM-1) expression and neutrophil infiltration. Female Lewis rats were fed a standard chow diet (control, ctrl) or a diet containing 0·1% polyphenolic GTE for five consecutive days before H/R. Rats were haemorrhaged to a mean arterial pressure of 30 (sem 2)mmHg for 60min and resuscitated. Control groups (sham_ctrl and sham_GTE) underwent surgical procedures without H/R. At 2h after resuscitation, tissues were harvested. Serum alanine aminotransferase (ALT) and IL-6 were measured. Hepatic necrosis, ICAM-1 expression and polymorphonuclear leucocyte (PMNL) infiltration were assessed. Hepatic expression of IκBα (phospho) was measured. H/R induced strong liver damage with increased necrosis and serum ALT levels. Compared with both sham groups, inflammatory markers (serum IL-6 and hepatic PMNL infiltration) were elevated after H/R (P<0·05). Also, H/R increased IκBα phosphorylation. GTE administration markedly (P<0·05) decreased serum ALT and IL-6 levels, hepatic necrosis as well as PMNL infiltration and the expression of ICAM-1 and phosphorylated IκBα compared with H/R. In conclusion, we observed that NF-κB activation plays an important role in the pathogenesis of liver injury after H/R through the up-regulation of hepatic ICAM-1 expression and subsequent PMNL infiltration. GTE pre-treatment prevents liver damage in this model of acute inflammation through a NF-κB-dependent mechanis

    Suppression of the interleukin- 1ß-induced inflammatory response of human Chang liver cells by acute and subacute exposure to alcohol: an in vitro study

    Get PDF
    Aim To evaluate protective immunosuppressive dose and time-dependent effects of ethanol in an in vitro model of acute inflammation in human Chang liver cells. Method The study was performed in 2016 and 2017 in the research laboratory of the Department of Trauma, Hand and Reconstructive Surgery, the University Hospital of the Goethe-University Frankfurt. Chang liver cells were stimulated with either interleukin (IL)-1β or IL-6 and subsequently treated with low-dose ethanol (85 mmol/L) or high-dose ethanol (170 mmol/L) for one hour (acute exposure) or 72 hours (subacute exposure). IL-6 and IL-1β release were determined by enzyme-linked immunosorbent assay. Neutrophil adhesion to Chang liver monolayers, production of reactive oxygen species, and apoptosis or necrosis were analyzed. Results Contrary to high-dose ethanol, acute low-dose ethanol exposure significantly reduced IL-1β-induced IL-6 and IL-6-induced IL-1β release (P < 0.05). Subacute ethanol exposure did not change proinflammatory cytokine release. Acute low-dose ethanol exposure significantly decreased inflammation-induced formation of reactive oxygen species (P < 0.05) and significantly improved cell survival (P < 0.05). Neither acute nor subacute high-dose ethanol exposure significantly changed inflammationinduced changes in reactive oxygen species or survival. Acute and subacute ethanol exposure, independently of the dose, significantly decreased neutrophil adhesion to inflamed Chang liver cells (P < 0.05). Conclusion Acute treatment of inflamed Chang liver cells with ethanol showed its immunosuppressive potential. However, the observed effects were limited to low-dose setting, indicating the relevance of ethanol dose in the modulation of inflammatory cell response

    Mycophenolate mofetil modulates adhesion receptors of the beta1 integrin family on tumor cells: impact on tumor recurrence and malignancy

    Get PDF
    BACKGROUND: Tumor development remains one of the major obstacles following organ transplantation. Immunosuppressive drugs such as cyclosporine and tacrolimus directly contribute to enhanced malignancy, whereas the influence of the novel compound mycophenolate mofetil (MMF) on tumor cell dissemination has not been explored. We therefore investigated the adhesion capacity of colon, pancreas, prostate and kidney carcinoma cell lines to endothelium, as well as their beta1 integrin expression profile before and after MMF treatment. METHODS: Tumor cell adhesion to endothelial cell monolayers was evaluated in the presence of 0.1 and 1 μM MMF and compared to unstimulated controls. beta1 integrin analysis included alpha1beta1 (CD49a), alpha2beta1 (CD49b), alpha3beta1 (CD49c), alpha4beta1 (CD49d), alpha5beta1 (CD49e), and alpha6beta1 (CD49f) receptors, and was carried out by reverse transcriptase-polymerase chain reaction, confocal microscopy and flow cytometry. RESULTS: Adhesion of the colon carcinoma cell line HT-29 was strongly reduced in the presence of 0.1 μM MMF. This effect was accompanied by down-regulation of alpha3beta1 and alpha6beta1 surface expression and of alpha3beta1 and alpha6beta1 coding mRNA. Adhesion of the prostate tumor cell line DU-145 was blocked dose-dependently by MMF. In contrast to MMF's effects on HT-29 cells, MMF dose-dependently up-regulated alpha1beta1, alpha2beta1, alpha3beta1, and alpha5beta1 on DU-145 tumor cell membranes. CONCLUSION: We conclude that MMF possesses distinct anti-tumoral properties, particularly in colon and prostate carcinoma cells. Adhesion blockage of HT-29 cells was due to the loss of alpha3beta1 and alpha6beta1 surface expression, which might contribute to a reduced invasive behaviour of this tumor entity. The enhancement of integrin beta1 subtypes observed in DU-145 cells possibly causes re-differentiation towards a low-invasive phenotype

    Rapid development of intestinal cell damage following severe trauma: a prospective observational cohort study

    Get PDF
    Introduction Loss of intestinal integrity has been implicated as an important contributor to the development of excessive inflammation following severe trauma. Thus far, clinical data concerning the occurrence and significance of intestinal damage after trauma remain scarce. This study investigates whether early intestinal epithelial cell damage occurs in trauma patients and, if present, whether such cell injury is related to shock, injury severity and the subsequent inflammatory response. Methods Prospective observational cohort study in 96 adult trauma patients. Upon arrival at the emergency room (ER) plasma levels of intestinal fatty acid binding protein (i-FABP), a specific marker for damage of differentiated enterocytes, were measured. Factors that potentially influence the development of intestinal cell damage after trauma were determined, including the presence of shock and the extent of abdominal trauma and general injury severity. Furthermore, early plasma levels of i-FABP were related to inflammatory markers interleukin-6 (IL-6), procalcitonin (PCT) and C-reactive protein (CRP). Results Upon arrival at the ER, plasma i-FABP levels were increased compared with healthy volunteers, especially in the presence of shock (P < 0.01). The elevation of i-FABP was related to the extent of abdominal trauma as well as general injury severity (P < 0.05). Circulatory i-FABP concentrations at ER correlated positively with IL-6 and PCT levels at the first day (r2 = 0.19; P < 0.01 and r2 = 0.36; P < 0.001 respectively) and CRP concentrations at the second day after trauma (r2 = 0.25; P < 0.01). Conclusions This study reveals early presence of intestinal epithelial cell damage in trauma patients. The extent of intestinal damage is associated with the presence of shock and injury severity. Early intestinal damage precedes and is related to the subsequent developing inflammatory response

    I-FABP as a Potential Marker for Intestinal Barrier Loss in Porcine Polytrauma

    Full text link
    Polytrauma and concomitant hemorrhagic shock can lead to intestinal damage and subsequent multiple organ dysfunction syndrome. The intestinal fatty acid-binding protein (I-FABP) is expressed in the intestine and appears quickly in the circulation after intestinal epithelial cell damage. This porcine animal study investigates the I-FABP dynamics in plasma and urine after polytrauma. Furthermore, it evaluates to what extent I-FABP can also act as a marker of intestinal damage in a porcine polytrauma model. Eight pigs (Sus scrofa) were subjected to polytrauma which consisted of lung contusion, tibial fracture, liver laceration, and hemorrhagic shock followed by blood and fluid resuscitation and fracture fixation with an external fixator. Eight sham animals were identically instrumented but not injured. Afterwards, intensive care treatment including mechanical ventilation for 72 h followed. I-FABP levels in blood and urine were determined by ELISA. In addition, immunohistological staining for I-FABP, active caspase-3 and myeloperoxidase were performed after 72 h. Plasma and urine I-FABP levels were significantly increased shortly after trauma. I-FABP expression in intestinal tissue showed significantly lower expression in polytraumatized animals vs. sham. Caspase-3 and myeloperoxidase expression in the immunohistological examination were significantly higher in the jejunum and ileum of polytraumatized animals compared to sham animals. This study confirms a loss of intestinal barrier after polytrauma which is indicated by increased I-FABP levels in plasma and urine as well as decreased I-FABP levels in immunohistological staining of the intestine

    Cardiac Glucose and Fatty Acid Transport After Experimental Mono- and Polytrauma

    Full text link
    OBJECTIVE The aim of this study was to define the influence of trauma on cardiac glucose and fatty acid transport. The effects were investigated in vivo in a porcine mono- and polytrauma model and in vitro in human cardiomyocytes, which were treated simultaneously with different inflammatory substances, mimicking post-traumatic inflammatory conditions. METHODS AND RESULTS In the porcine fracture- and polytrauma model, blood glucose concentrations were measured by blood gas analysis during an observation period of 72 h. The expression of cardiac glucose and fatty acid transporters in the left ventricle was determined by RT-qPCR and immunofluorescence. Cardiac and hepatic glycogen storage was examined. Furthermore, human cardiomyocytes were exposed to a defined trauma-cocktail and the expression levels of glucose- and fatty acid transporters were determined. Early after polytrauma, hyperglycaemia was observed. After 48 h and 72 h, pigs with fracture- and polytrauma developed hypoglycaemia. The propofol demand significantly increased post trauma. The hepatic glycogen concentration was reduced 72 h after trauma. Cardiac glucose and fatty acid transporters changed in both trauma models in vivo as well as in vitro in human cardiomyocytes in presence of proinflammatory mediators. CONCLUSIONS Monotrauma as well as polytrauma changed the cardiac energy transport by altering the expression of glucose and fatty acid transporters. In vitro data suggest that human cardiomyocytes shift to a state alike myocardial hibernation preferring glucose as primary energy source in order to maintain cardiac function

    A Barrier to Defend - Models of Pulmonary Barrier to Study Acute Inflammatory Diseases

    Get PDF
    Pulmonary diseases represent four out of ten most common causes for worldwide mortality. Thus, pulmonary infections with subsequent inflammatory responses represent a major public health concern. The pulmonary barrier is a vulnerable entry site for several stress factors, including pathogens such as viruses, and bacteria, but also environmental factors e.g. toxins, air pollutants, as well as allergens. These pathogens or pathogen-associated molecular pattern and inflammatory agents e.g. damage-associated molecular pattern cause significant disturbances in the pulmonary barrier. The physiological and biological functions, as well as the architecture and homeostatic maintenance of the pulmonary barrier are highly complex. The airway epithelium, denoting the first pulmonary barrier, encompasses cells releasing a plethora of chemokines and cytokines, and is further covered with a mucus layer containing antimicrobial peptides, which are responsible for the pathogen clearance. Submucosal antigen-presenting cells and neutrophilic granulocytes are also involved in the defense mechanisms and counterregulation of pulmonary infections, and thus may directly affect the pulmonary barrier function. The detailed understanding of the pulmonary barrier including its architecture and functions is crucial for the diagnosis, prognosis, and therapeutic treatment strategies of pulmonary diseases. Thus, considering multiple side effects and limited efficacy of current therapeutic treatment strategies in patients with inflammatory diseases make experimental in vitro and in vivo models necessary to improving clinical therapy options. This review describes existing models for studyying the pulmonary barrier function under acute inflammatory conditions, which are meant to improve the translational approaches for outcome predictions, patient monitoring, and treatment decision-making. Copyright © 2022 Herminghaus, Kozlov, Szabó, Hantos, Gylstorff, Kuebart, Aghapour, Wissuwa, Walles, Walles, Coldewey and Relja
    corecore