10 research outputs found

    Ultrasound-assisted decoration of CuOx nanoclusters on TiO2 nanoparticles for additives free photocatalytic hydrogen production and biomass valorization by selective oxidation

    Get PDF
    The herein presented ultrasound-assisted ultra-wet (US-UWet) impregnation synthetic approach was followed in order to avoid the drawbacks of the conventional wet impregnation synthesis. The goal was to homogeneously decorate the surface of the TiO2 nanoparticles with nanometric sized (< 4 nm) clusters of mixed cupric and cuprous oxides. The physicochemical features of the nanocomposite (TiO2CuOx) were determined by high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM), high-resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and Diffuse reflectance (DR) spectroscopy. TiO2CuOx showed an enhanced and continuous capability to generate molecular hydrogen upon low power ultraviolet irradiation. The benchmark commercial TiO2 P25 did not reveal any H2 formation under these conditions. TiO2CuOx presented also a high efficiency for the additives-free selective partial oxidation of two well established biomass derived model platform chemicals/building blocks, 5-hydroxymethylfurfural (HMF) and benzyl alcohol (BnOH) to the value-added chemicals 2,5-diformylfuran (DFF) and benzyl aldehyde (PhCHO), respectively. The nanocomposite showed higher DFF and PhCHO yield compared to P25

    Project Management

    No full text

    Reactive Black 5 Degradation on Manganese Oxides Supported on Sodium Hydroxide Modified Graphene Oxide

    No full text
    Sodium hydroxide-modified graphene oxide was used as manganese oxides support for the preparation of nanocomposites via a one-pot preparation route for the degradation of Reactive Black 5. The nanocomposites were characterized for their structure by X-ray diffraction, for their textural properties by Nitrogen adsorption, and for their surface chemistry by Fourier transform infrared spectroscopy, potentiometric titration, and thermal analysis measurements. The nanocomposites prepared showed to possess high activity for the degradation/oxidation of Reactive Black 5 at ambient conditions, without light irradiation, which was higher than that of the precursors manganese oxides and can be attributed to the synergistic effect of the manganese oxides and the modified graphene oxide

    Graphene Oxide Based Magnetic Nanocomposites with Polymers as Effective Bisphenol–A Nanoadsorbents

    No full text
    Magnetic graphene oxide was impregnated with polymers for the preparation of nanocomposite adsorbents to be examined for the adsorptive removal of a typical endocrine disruptor, bisphenol&ndash;A (BPA) from aqueous solutions. The polymers used were polystyrene, chitosan and polyaniline. The nanocomposites prepared were characterized for their structure, morphology and surface chemistry. The nanocomposites presented an increase adsorptive activity for BPA at ambient conditions, compared to pure magnetic oxide, attributed to the synergistic effect of the polymers and the magnetic graphene oxide. The increased adsorption of BPA exhibited by the nanocomposites with chitosan and polyaniline could be attributed to the contribution of amine groups

    Activated Porous Carbon Derived from Tea and Plane Tree Leaves Biomass for the Removal of Pharmaceutical Compounds from Wastewaters

    No full text
    The aim of the present study is the synthesis of activated carbon (AC) from different agricultural wastes such as tea and plane tree leaves in order to use them for the removal of pramipexole dihydrochloride (PRM) from aqueous solutions. Two different carbonization and synthetic activation protocols were followed, with the herein-proposed ultrasound-assisted two-step protocol leading to better-performing carbon, especially for the tea-leaf-derived material (TEA(char)-AC). Physicochemical characterizations were performed by Fourier-transform infrared spectroscopy (FTIR), N2 physisorption, and scanning electron microscopy (SEM). TEA(char)-AC presented the highest surface area (1151 m2/g) and volume of micro and small mesopores. Maximum capacity was found at 112 mg/g for TEA(char)-AC at an optimum pH equal to 3, with the Langmuir isotherm model presenting a better fitting. The removal efficiency of TEA(char)-AC is higher than other biomass-derived carbons and closer to benchmark commercial carbons
    corecore