55 research outputs found

    Mechanisms of Uptake and Membrane Curvature Generation for the Internalization of Silica Nanoparticles by Cells

    Get PDF
    [Image: see text] Nanosized drug carriers enter cells via active mechanisms of endocytosis but the pathways involved are often not clarified. Cells possess several mechanisms to generate membrane curvature during uptake. However, the mechanisms of membrane curvature generation for nanoparticle uptake have not been explored so far. Here, we combined different methods to characterize how silica nanoparticles with a human serum corona enter cells. In these conditions, silica nanoparticles are internalized via the LDL receptor (LDLR). We demonstrate that despite the interaction with LDLR, uptake is not clathrin-mediated, as usually observed for this receptor. Additionally, silencing the expression of different proteins involved in clathrin-independent mechanisms and several BAR-domain proteins known to generate membrane curvature strongly reduces nanoparticle uptake. Thus, nanosized objects targeted to specific receptors, such as here LDLR, can enter cells via different mechanisms than their endogenous ligands. Additionally, nanoparticles may trigger alternative mechanisms of membrane curvature generation for their internalization

    Effects of Protein Source on Liposome Uptake by Cells:Corona Composition and Impact of the Excess Free Proteins

    Get PDF
    Corona formation in biological fluids strongly affects nanomedicine interactions with cells. However, relatively less is known on additional effects from the free proteins in solution. Within this context, this study aims to gain a better understanding of nanomaterial-cell interactions in different biological fluids and, more specifically, to disentangle effects due to corona composition and those from the free proteins in solution. To this aim, the uptake of liposomes in medium with bovine and human serum are compared. Uptake efficiency in the two media differs strongly, as also corona composition. However, in contrast with similar studies on other nanomaterials, despite the very different corona, when the two corona-coated liposomes are exposed to cells in serum free medium, their uptake is comparable. Thus, in this case, the observed differences in uptake depend primarily on the presence and source of the free proteins. Similar results are obtained when testing the liposomes on different human cells, as well as in murine cells and in the presence of murine serum. Overall, these results show that the protein source affects nanomedicine uptake not only due to effects on corona composition, but also due to the presence and composition of the free proteins in solution

    Correlating Corona Composition and Cell Uptake to Identify Proteins Affecting Nanoparticle Entry into Endothelial Cells

    Get PDF
    [Image: see text] The formation of the biomolecule corona on the surface of nanoparticles upon exposure to biological fluids critically influences nanocarrier performance in drug delivery. It has been shown that in some cases corona proteins can mediate specific nanoparticle interactions with cell receptors. Within this context, in order to identify corona proteins affecting nanoparticle uptake, in this work, correlation analysis is performed between the corona composition of a panel of silica nanoparticles of different sizes and surface functionalities and their uptake in four endothelial cell types derived from different organs. In this way, proteins that correlate with increased or decreased uptake were identified, and their effects were validated by studying the uptake of nanoparticles coated with a single protein corona and competition studies in brain and liver endothelium. The results showed that precoating nanoparticles with histidine-rich glycoprotein (HRG) alone strongly decreased uptake in both liver and brain endothelium. Furthermore, our results suggested the involvement of the transferrin receptor in nanoparticle uptake in liver endothelium and redirection of the nanoparticles to other receptors with higher uptake efficiency when the transferrin receptor was blocked by free transferrin. These data suggested that changes in the cell microenvironment can also affect nanoparticle uptake and may lead to a different interaction site with nanoparticles, affecting their uptake efficiency. Overall, correlating the composition of the protein corona and nanoparticle uptake by cells allows for the identification of corona molecules that can be used to increase as well as to reduce nanoparticle uptake by cells

    Explaining the polarized macrophage pool during murine allergic lung inflammation

    Get PDF
    IntroductionDifferentially polarized macrophages, especially YM1+ and MHCII+ macrophages, play an important role in asthma development. The origin of these polarized macrophages has not been elucidated yet. We therefore aimed to investigate how proliferation, monocyte recruitment, and/or switching of polarization states contribute to this specific pool of polarized interstitial and alveolar macrophages during development of house dust mite (HDM)-induced allergic lung inflammation in mice.MethodsMale and female mice were first treated intranasally with PKH26 to label lung-resident macrophages and were then exposed to either HDM or phosphate-buffered saline (PBS) for two weeks. Different myeloid immune cell types were quantified in lung tissue and blood using flow cytometry.ResultsWe found that macrophage polarization only starts up in the second week of HDM exposures. Before this happened, unpolarized alveolar and interstitial macrophages transiently increased in HDM-exposed mice. This transient increase was mostly local proliferation of alveolar macrophages, while interstitial macrophages also contained unlabeled macrophages suggesting monocyte contribution. After two weeks of exposures, the number of interstitial and alveolar macrophages was similar between HDM and PBS-exposed mice, but the distribution of polarization states was remarkably different. HDM-exposed mice selectively developed YM1+ alveolar macrophages and MHCII-hi interstitial macrophages while nonpolarized macrophages were lost compared to PBS-exposed mice. DiscussionIn this HDM model we have shown that development of a polarized macrophage pool during allergic inflammation is first dependent on proliferation of nonpolarized tissue-resident macrophages with some help of infiltrating unlabeled cells, presumably circulating monocytes. These nonpolarized macrophages then acquire their polarized phenotype by upregulating YM1 on alveolar macrophages and MHCII on interstitial macrophages. This novel information will help us to better understand the role of macrophages in asthma and designing therapeutic strategies targeting macrophage functions.</p

    Corona Composition Can Affect the Mechanisms Cells Use to Internalize Nanoparticles

    Get PDF
    Nano-sized objects, such as nanoparticles and other drug carriers used in nanomedicine, once in contact with biological environments are modified by adsorption of biomolecules on their surface. The presence of this corona strongly affects the following interactions at cell and organism levels. It has been shown that corona proteins can be recognized by cell receptors. However, it is not known whether the composition of this acquired layer can also affect the mechanisms nanoparticles use to enter cells. This is of particular importance when considering that the same nanoparticles can form different coronas for instance In Vitro when exposed to cells in different serum amounts, or In Vivo depending on the exposure or administration route. Thus, in this work, different coronas were formed on 50 nm silica by exposing them to different serum concentrations. The uptake efficiency in HeLa cells was compared, and the uptake mechanisms were characterized using transport inhibitors and RNA interference. The results showed that the nanoparticles were internalized by cells via different mechanisms when different coronas were formed, and only for one corona condition uptake was mediated by the LDL receptor. This suggested that corona of different composition can be recognized differently by cell receptors, and this in turn leads to internalization via different mechanisms. Similar studies were performed using other cells, including A549 cells and primary HUVEC, and different nanoparticles, namely 100 nm liposomes and 200 nm silica. Overall, the results confirmed that the corona composition can affect the mechanism of nanoparticle uptake by cells

    Upregulation of Epac-1 in Hepatic Stellate Cells by Prostaglandin E-2 in Liver Fibrosis Is Associated with Reduced Fibrogenesiss

    Get PDF
    Exchange protein activated by cAMP (Epac-1) is an important signaling mechanism for cAMP-mediated effects, yet factors that change Epac-1 levels are unknown. Such factors are relevant because it has been postulated that Epac-1 directly affects fibrogenesis. Prostaglandin E-2 (PGE(2)) is a well-known cAMP activator, and we therefore studied the effects of this cyclo-oxygenase product on Epac-1 expression and on fibrogenesis within the liver. Liver fibrosis was induced by 8 weeks carbon tetrachloride (CCL4) administration to mice. In the last 2 weeks, mice received vehicle, PGE(2), the cyclo-oxygenase-2 inhibitor niflumic acid (NFA), or PGE(2) coupled to cell-specific carriers to hepatocytes, Kupffer cells, or hepatic stellate cells (HSC). Results showed antifibrotic effects of PGE(2) and profibrotic effects of NFA in CCL4 mice. Western blot analysis revealed reduced Epac-1 protein expression in fibrotic livers of mice and humans compared with healthy livers. PGE(2) administration to fibrotic mice completely restored intrahepatic Epac-1 levels and also led to reduced Rho kinase activity, a downstream target of Epac-1. Cell-specific delivery of PGE(2) to either hepatocytes, Kupffer cells, or HSC identified the latter cell as the key player in the observed effects on Epac-1 and Rho kinase. No significant alterations in protein kinase A expressions were found. In primary isolated HSC, PGE(2) elicited Rap1 translocation reflecting Epac-1 activation, and Epac-1 agonists attenuated platelet-derived growth factor-induced proliferation and migration of these cells. These studies demonstrate that PGE(2) enhances Epac-1 activity in HSC, which is associated with significant changes in (myo)fibroblast activities in vitro and in vivo. Therefore, Epac-1 is a potential target for antifibrotic drugs.</p

    Osteoprotegerin Expression in Liver is Induced by IL13 through TGFβ

    Get PDF
    BACKGROUND/AIMS: Osteoprotegerin (OPG) is a profibrotic mediator produced by myofibro-blasts under influence of transforming growth factor β (TGFβ). Its expression in experimental models of liver fibrosis correlates well with disease severity and treatment responses. The regulation of OPG in liver tissue is largely unknown and we therefore set out to elucidate which growth factors/interleukins associated with fibrosis induce OPG and through which pathways. METHODS: Precision-cut liver slices of wild type and STAT6-deficient mice and 3T3 fibroblasts were used to investigate the effects of TGFβ, interleukin (IL) 13 (IL13), IL1β, and platelet-derived growth factor BB (PDGF-BB) on expression of OPG. OPG protein was measure by ELISA, whereas OPG mRNA and expression of other relevant genes was measured by qPCR. RESULTS: In addition to TGFβ, only IL13 and not PDGF-BB or IL1β could induce OPG expression in 3T3 fibroblasts and liver slices. This IL13-dependent induction was not shown in liver slices of STAT6-deficient mice and when wild type slices were cotreated with TGFβ receptor 1 kinase inhibitor galunisertib, STAT6 inhibitor AS1517499, or AP1 inhibitor T5224. This suggests that the OPG-inducing effect of IL13 is mediated through IL13 receptor α1-activation and subsequent STAT6-dependent upregulation of IL13 receptor α2, which in turn activates AP1 and induces production of TGFβ and subsequent production of OPG. CONCLUSION: We have shown that IL13 induces OPG release by liver tissue through a TGFβ-dependent pathway involving both the α1 and the α2 receptor of IL13 and transcription factors STAT6 and AP1. OPG may therefore be a novel target for the treatment liver fibrosis as it is mechanistically linked to two important regulators of fibrosis in liver, namely IL13 and TGFβ1
    corecore