78 research outputs found

    Probing the high momentum component of the deuteron at high Q^2

    Full text link
    The d(e,e'p) cross section at a momentum transfer of 3.5 (GeV/c)^2 was measured over a kinematical range that made it possible to study this reaction for a set of fixed missing momenta as a function of the neutron recoil angle theta_nq and to extract missing momentum distributions for fixed values of theta_nq up to 0.55 GeV/c. In the region of 35 (deg) <= theta_nq <= 45 (deg) recent calculations, which predict that final state interactions are small, agree reasonably well with the experimental data. Therefore these experimental reduced cross sections provide direct access to the high momentum component of the deuteron momentum distribution in exclusive deuteron electro-disintegration.Comment: 5 pages, 2 figure

    Scaling Tests of the Cross Section for Deeply Virtual Compton Scattering

    Get PDF
    We present the first measurements of the \vec{e}p->epg cross section in the deeply virtual Compton scattering (DVCS) regime and the valence quark region. The Q^2 dependence (from 1.5 to 2.3 GeV^2) of the helicity-dependent cross section indicates the twist-2 dominance of DVCS, proving that generalized parton distributions (GPDs) are accessible to experiment at moderate Q^2. The helicity-independent cross section is also measured at Q^2=2.3 GeV^2. We present the first model-independent measurement of linear combinations of GPDs and GPD integrals up to the twist-3 approximation.Comment: 5 pages, 4 figures, 2 tables. Text shortened for publication. References added. One figure remove

    Exclusive Neutral Pion Electroproduction in the Deeply Virtual Regime

    Full text link
    We present measurements of the ep->ep pi^0 cross section extracted at two values of four-momentum transfer Q^2=1.9 GeV^2 and Q^2=2.3 GeV^2 at Jefferson Lab Hall A. The kinematic range allows to study the evolution of the extracted hadronic tensor as a function of Q^2 and W. Results will be confronted with Regge inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering has also been attempted

    Thyroid control over biomembranes: VI. Lipids in liver mitochondria and microsomes of hypothyroid rats

    Full text link
    The lipids of liver mitochondria prepared from normal rats and from rats made hypothyroid by thyroidectomy and injection with131INa contained similar amounts, per mg protein, of total lipids, phospholipids, neutral lipids and lipid phosphorus. Hypothyroidism caused a doubling of the relative amounts of mitochondrial cardiolipins (CL; to 20.5% of the phospholipid P) and an accompanying trend (although statistically not significant) toward decreased amounts of both phosphatidylcholines (PC) and phosphatidylserines (PS), with phosphatidylethanolamines (PE) remaining unchanged. The pattern of elevated 18∶2 fatty acyl content and depleted 20∶4 acyl groups of the mitochondrial phospholipids of hypothyroid preparations was reflected to varying degrees in the resolved phospholipids, with PC showing greater degrees of abnormality than PE, and CL showing none. Hypothyroidism produced the same abnormal pattern of fatty acyl distributions in liver microsomal total lipids as was found in the mitochondria. Hypothyroid rats, when killed 6 hr after injection of [1‐14C] labeled linoleate, showed the following abnormalities: the liver incorporated less label into lipids, and converted 18∶2 not exclusively to 20∶4 (as normals do) but instead incorporated the label mainly into saturated fatty acids. These data, together with the known decrease in ÎČ‐oxidation, suggest that hypothyroidism involves possible defective step(s) in the conversion of 18∶2 to 20∶4.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142296/1/lipd0328.pd

    History of clinical transplantation

    Get PDF
    How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York

    Effect of O 2

    No full text

    A piston geometry and nozzle spray angle investigation in a DI diesel engine by quantifying the air-fuel mixture

    No full text
    Low temperature diesel combustion has been widely investigated over the last few years for reducing in-cylinder emissions of Direct Injection (DI) diesel engines without sacrificing efficiency and fuel consumption. The spatial distribution of the fuel within the combustion chamber and the air-fuel mixing quality are the key factors affecting temperature generation within the cylinder. Avoiding fuel rich areas within the cylinder can significantly reduce the local high temperatures resulting in low NOx formation. This paper investigates the effects of the combustion chamber geometry and spray angle on the air-fuel mixing and emissions formation of a DI diesel engine. A new quantitative factor measuring the air-fuel mixing quality has been adopted in order to analyze and compare air-fuel mixing quality for different piston geometries. The results have shown that pistons with a narrow entrance and a deep combustion re-entrant chamber benefit from increased air-fuel mixtures due to the significantly higher swirl generated within the cylinder. However, the improved air-fuel mixing does not consequently lead to a reduced NOx generation, which is highly affected by the combustion efficiency of the engine.Peer reviewe
    • 

    corecore