1,950 research outputs found

    Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber

    Full text link
    Trapping and optically interfacing laser-cooled neutral atoms is an essential requirement for their use in advanced quantum technologies. Here we simultaneously realize both of these tasks with cesium atoms interacting with a multi-color evanescent field surrounding an optical nanofiber. The atoms are localized in a one-dimensional optical lattice about 200 nm above the nanofiber surface and can be efficiently interrogated with a resonant light field sent through the nanofiber. Our technique opens the route towards the direct integration of laser-cooled atomic ensembles within fiber networks, an important prerequisite for large scale quantum communication schemes. Moreover, it is ideally suited to the realization of hybrid quantum systems that combine atoms with, e.g., solid state quantum devices

    Diffusive transport of light in three-dimensional disordered Voronoi structures

    Full text link
    The origin of diffusive transport of light in dry foams is still under debate. In this paper, we consider the random walks of photons as they are reflected or transmitted by liquid films according to the rules of ray optics. The foams are approximately modeled by three-dimensional Voronoi tessellations with varying degree of disorder. We study two cases: a constant intensity reflectance and the reflectance of thin films. Especially in the second case, we find that in the experimentally important regime for the film thicknesses, the transport-mean-free path does not significantly depend on the topological and geometrical disorder of the Voronoi foams including the periodic Kelvin foam. This may indicate that the detailed structure of foams is not crucial for understanding the diffusive transport of light. Furthermore, our theoretical values for transport-mean-free path fall in the same range as the experimental values observed in dry foams. One can therefore argue that liquid films contribute substantially to the diffusive transport of light in {dry} foams.Comment: 8 pages, 8 figure

    Moving up and down in the generic multiverse

    Full text link
    We give a brief account of the modal logic of the generic multiverse, which is a bimodal logic with operators corresponding to the relations "is a forcing extension of" and "is a ground model of". The fragment of the first relation is called the modal logic of forcing and was studied by us in earlier work. The fragment of the second relation is called the modal logic of grounds and will be studied here for the first time. In addition, we discuss which combinations of modal logics are possible for the two fragments.Comment: 10 pages. Extended abstract. Questions and commentary concerning this article can be made at http://jdh.hamkins.org/up-and-down-in-the-generic-multiverse

    Multipole structure and coordinate systems

    Get PDF
    Multipole expansions depend on the coordinate system, so that coefficients of multipole moments can be set equal to zero by an appropriate choice of coordinates. Therefore, it is meaningless to say that a physical system has a nonvanishing quadrupole moment, say, without specifying which coordinate system is used. (Except if this moment is the lowest non-vanishing one.) This result is demonstrated for the case of two equal like electric charges. Specifically, an adapted coordinate system in which the potential is given by a monopole term only is explicitly found, the coefficients of all higher multipoles vanish identically. It is suggested that this result can be generalized to other potential problems, by making equal coordinate surfaces coincide with the potential problem's equipotential surfaces.Comment: 2 figure

    Recuperative system for high and ultra-high temperature flue gases. Final report

    Get PDF
    Advanced recuperative system technology for high and ultra-high temperature flue gases was investigated. Several high temperature recuperator system and component concepts were evolved and studied for the purpose of finding the schemes and designs that attain maximum fuel savings. The most promising concepts for industrial application were pre-engineered further to devise designs for adaptation to existing steel mills. The principal effort was aimed at steel soaking pit applications. The concept which provides the highest air preheat temperatures and the largest fuel savings for soaking pit application utilizing basic state-of-the-art technology is a low air pressure ceramic recuperator operated in conjunction with a higher air pressure metallic recuperator. This concept has the additional advantage that higher air pressures can be attained at the burner than can be attained with an all ceramic recuperator. These higher air pressures are required for high momentum, high efficiency burner performance, resulting in improved productivity and additional fuel savings. The technical feasibility of applying this high temperature recuperation system to existing soaking pits was established

    Lithium isotope geochemistry of marine pore waters: Insights from cold seep fluids

    Get PDF
    Lithium concentration and isotope data (δ7Li) are reported for pore fluids from 18 cold seep locations together with reference fluids from shallow marine environments, a sediment-hosted hydrothermal system and two Mediterranean brine basins. The new reference data and literature data of hydrothermal fluids and pore fluids from the Ocean Drilling Program follow an empirical relationship between Li concentration and δ7Li (δ7Li = −6.0(±0.3) · ln[Li] + 51(±1.2)) reflecting Li release from sediment or rocks and/or uptake of Li during mineral authigenesis. Cold seep fluids display δ7Li values between +7.5‰ and +45.7‰, mostly in agreement with this general relationship. Ubiquitous diagenetic signals of clay dehydration in all cold seep fluids indicate that authigenic smectite–illite is the major sink for light pore water Li in deeply buried continental margin sediments. Deviations from the general relationship are attributed to the varying provenance and composition of sediments or to transport-related fractionation trends. Pore fluids on passive margins receive disproportionally high amounts of Li from intensely weathered and transported terrigenous matter. By contrast, on convergent margins and in other settings with strong volcanogenic input, Li concentrations in pore water are lower because of intense Li uptake by alteration minerals and, most notably, adsorption of Li onto smectite. The latter process is not accompanied by isotope fractionation, as revealed from a separate study on shallow sediments. A numerical transport-reaction model was applied to simulate Li isotope fractionation during upwelling of pore fluids. It is demonstrated that slow pore water advection (order of mm a−1) suffices to convey much of the deep-seated diagenetic Li signal into shallow sediments. If carefully applied, Li isotope systematics may, thus, provide a valuable record of fluid/mineral interaction that has been inherited several hundreds or thousands of meters below the actual seafloor fluid escape structure

    All-optical formation of a Bose-Einstein condensate for applications in scanning electron microscopy

    Full text link
    We report on the production of a F=1 spinor condensate of 87Rb atoms in a single beam optical dipole trap formed by a focused CO2 laser. The condensate is produced 13mm below the tip of a scanning electron microscope employing standard all-optical techniques. The condensate fraction contains up to 100,000 atoms and we achieve a duty cycle of less than 10s.Comment: 5 pages, 4 figure

    Implications of Pseudospin Symmetry on Relativistic Magnetic Properties and Gamow - Teller Transitions in Nuclei

    Get PDF
    Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from 39Ca^{39}Ca to its mirror nucleus 39K^{39}K.Comment: 17 pages, 2 figures, to be published in PRC. Slightly revised text with one reference adde
    • …
    corecore