192 research outputs found
Carrier and Light Trapping in Graded Quantum Well Laser Structures
We investigated the carrier and light trapping in GaInAs/AlGaAs single
quantum well laser structures by means of time resolved photoluminescence and
Raman spectroscopy. The influence of the shape and depth of the confinement
potential and of the cavity geometry was studied by using different AlGaAs/GaAs
short-period superlattices as barriers. Our results show that grading the
optical cavity improves considerably both carrier and light trapping in the
quantum well, and that the trapping efficiency is enhanced by increasing the
graded confining potential.Comment: PDF-format, 15 pages (including 4 figures), Applied Physics Letters
(June 2000
Maskless selective growth of InGaAs/InP quantum wires on (100) GaAs
A new fabrication process to create InGaAs/InP quantum wires on (100) GaAs substrates is demonstrated. The process is based on the selectivity of the growth of InP on lines created by focused ion beam bombardment, together with the selectivity of the growth of InGaAs on the InP wires. Intense photoluminescene is observed from the wires and the emission shows clear polarization parallel and perpendicular to the wires. Cathodoluminescene images confirm that the luminescence originates from the wires.Peer reviewe
Scattering of dipole-mode vector solitons: Theory and experiment
We study, both theoretically and experimentally, the scattering properties of
optical dipole-mode vector solitons - radially asymmetric composite
self-trapped optical beams. First, we analyze the soliton collisions in an
isotropic two-component model with a saturable nonlinearity and demonstrate
that in many cases the scattering dynamics of the dipole-mode solitons allows
us to classify them as ``molecules of light'' - extremely robust spatially
localized objects which survive a wide range of interactions and display many
properties of composite states with a rotational degree of freedom. Next, we
study the composite solitons in an anisotropic nonlinear model that describes
photorefractive nonlinearities, and also present a number of experimental
verifications of our analysis.Comment: 8 pages + 4 pages of figure
Nonlinear response of the vacuum Rabi resonance
On the level of single atoms and photons, the coupling between atoms and the
electromagnetic field is typically very weak. By employing a cavity to confine
the field, the strength of this interaction can be increased many orders of
magnitude to a point where it dominates over any dissipative process. This
strong-coupling regime of cavity quantum electrodynamics has been reached for
real atoms in optical cavities, and for artificial atoms in circuit QED and
quantum-dot systems. A signature of strong coupling is the splitting of the
cavity transmission peak into a pair of resolvable peaks when a single resonant
atom is placed inside the cavity - an effect known as vacuum Rabi splitting.
The circuit QED architecture is ideally suited for going beyond this linear
response effect. Here, we show that increasing the drive power results in two
unique nonlinear features in the transmitted heterodyne signal: the
supersplitting of each vacuum Rabi peak into a doublet, and the appearance of
additional peaks with the characteristic sqrt(n) spacing of the Jaynes-Cummings
ladder. These constitute direct evidence for the coupling between the quantized
microwave field and the anharmonic spectrum of a superconducting qubit acting
as an artificial atom.Comment: 6 pages, 4 figures. Supplementary Material and Supplementary Movies
are available at http://www.eng.yale.edu/rslab/publications.htm
Home Is Where the Smart Is: Development and Validation of the Cybersecurity Self-Efficacy in Smart Homes (CySESH) Scale
The ubiquity of devices connected to the internet raises concerns about the security and privacy of smart homes. The effectiveness of interventions to support secure user behaviors is limited by a lack of validated instruments to measure relevant psychological constructs, such as self-efficacy - the belief that one is able to perform certain behaviors. We developed and validated the Cybersecurity Self-Efficacy in Smart Homes (CySESH) scale, a 12-item unidimensional measure of domain-specific self-efficacy beliefs, across five studies (N = 1247). Three pilot studies generated and refined an item pool. We report evidence from one initial and one major, preregistered validation study for (1) excellent reliability (α = 0.90), (2) convergent validity with self-efficacy in information security (rSEIS = 0.64, p < .001), and (3) discriminant validity with outcome expectations (rOE = 0.26, p < .001), self-esteem (rRSE = 0.17, p < .001), and optimism (rLOT-R = 0.18, p < .001). We discuss CySESH's potential to advance future HCI research on cybersecurity, practitioner user assessments, and implications for consumer protection policy
Resolving photon number states in a superconducting circuit
Electromagnetic signals are always composed of photons, though in the circuit
domain those signals are carried as voltages and currents on wires, and the
discreteness of the photon's energy is usually not evident. However, by
coupling a superconducting qubit to signals on a microwave transmission line,
it is possible to construct an integrated circuit where the presence or absence
of even a single photon can have a dramatic effect. This system is called
circuit quantum electrodynamics (QED) because it is the circuit equivalent of
the atom-photon interaction in cavity QED. Previously, circuit QED devices were
shown to reach the resonant strong coupling regime, where a single qubit can
absorb and re-emit a single photon many times. Here, we report a circuit QED
experiment which achieves the strong dispersive limit, a new regime of cavity
QED in which a single photon has a large effect on the qubit or atom without
ever being absorbed. The hallmark of this strong dispersive regime is that the
qubit transition can be resolved into a separate spectral line for each photon
number state of the microwave field. The strength of each line is a measure of
the probability to find the corresponding photon number in the cavity. This
effect has been used to distinguish between coherent and thermal fields and
could be used to create a photon statistics analyzer. Since no photons are
absorbed by this process, one should be able to generate non-classical states
of light by measurement and perform qubit-photon conditional logic, the basis
of a logic bus for a quantum computer.Comment: 6 pages, 4 figures, hi-res version at
http://www.eng.yale.edu/rslab/papers/numbersplitting_hires.pd
Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong coupling regime
In cavity quantum electrodynamics (QED), light-matter interaction is probed
at its most fundamental level, where individual atoms are coupled to single
photons stored in three-dimensional cavities. This unique possibility to
experimentally explore the foundations of quantum physics has greatly evolved
with the advent of circuit QED, where on-chip superconducting qubits and
oscillators play the roles of two-level atoms and cavities, respectively. In
the strong coupling limit, atom and cavity can exchange a photon frequently
before coherence is lost. This important regime has been reached both in cavity
and circuit QED, but the design flexibility and engineering potential of the
latter allowed for increasing the ratio between the atom-cavity coupling rate
and the cavity transition frequency above the percent level. While these
experiments are well described by the renowned Jaynes-Cummings model, novel
physics is expected in the ultrastrong coupling limit. Here, we report on the
first experimental realization of a superconducting circuit QED system in the
ultrastrong coupling limit and present direct evidence for the breakdown of the
Jaynes-Cummings model.Comment: 5 pages, 3 figure
Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data
We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars
Vertical-external-cavity surface-emitting lasers and quantum dot lasers
The use of cavity to manipulate photon emission of quantum dots (QDs) has
been opening unprecedented opportunities for realizing quantum functional
nanophotonic devices and also quantum information devices. In particular, in
the field of semiconductor lasers, QDs were introduced as a superior
alternative to quantum wells to suppress the temperature dependence of the
threshold current in vertical-external-cavity surface-emitting lasers
(VECSELs). In this work, a review of properties and development of
semiconductor VECSEL devices and QD laser devices is given. Based on the
features of VECSEL devices, the main emphasis is put on the recent development
of technological approach on semiconductor QD VECSELs. Then, from the viewpoint
of both single QD nanolaser and cavity quantum electrodynamics (QED), a
single-QD-cavity system resulting from the strong coupling of QD cavity is
presented. A difference of this review from the other existing works on
semiconductor VECSEL devices is that we will cover both the fundamental aspects
and technological approaches of QD VECSEL devices. And lastly, the presented
review here has provided a deep insight into useful guideline for the
development of QD VECSEL technology and future quantum functional nanophotonic
devices and monolithic photonic integrated circuits (MPhICs).Comment: 21 pages, 4 figures. arXiv admin note: text overlap with
arXiv:0904.369
- …