101 research outputs found

    Metabolism of Gamma-Benzene Hexachloride in the Animal Body

    Full text link

    Extra-osseous osteochondroma-like soft tissue mass of the patello-femoral space

    Get PDF
    BACKGROUND: Extraskeletal cartilaginous tumors are uncommon. Osteochondromas usually arise from the metaphyseal region of the growing skeleton. CASE PRESENTATION: A 53 year old man presented with a three years history of anterior knee pain and inability to flex his knee more than 90°. Clinical examination and imaging studies revealed a nodular calcific mass in the anterior portion of the knee, displacing the medial portion of the patellar tendon. Following excision, histopathology confirmed the diagnosis of extra-osseous osteochondroma-like soft tissue mass, with no recurrence 24 months after surgery. CONCLUSION: An integrated clinical-pathologic diagnosis helps to clarify the nature of extraskeletal cartilaginous tumors that can arise at unusual anatomic site. Complete local surgical excision is the management of choice

    A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Get PDF
    BACKGROUND: The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA) sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. RESULTS: The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order) and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology reflects the true organismal relationships. CONCLUSION: In disclosing a sister relationship between the Mesostigmatales and Chlorokybales, our study resolves the long-standing debate about the nature of the unicellular flagellated ancestors of land plants and alters significantly our concepts regarding the evolution of streptophyte algae. Moreover, in predicting a richer chloroplast gene repertoire than previously inferred for the common ancestor of all streptophytes, our study has contributed to a better understanding of chloroplast genome evolution in the Viridiplantae

    Regulation of pH During Amelogenesis

    Get PDF
    During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation

    The fractal globule as a model of chromatin architecture in the cell

    Get PDF
    The fractal globule is a compact polymer state that emerges during polymer condensation as a result of topological constraints which prevent one region of the chain from passing across another one. This long-lived intermediate state was introduced in 1988 (Grosberg et al. 1988) and has not been observed in experiments or simulations until recently (Lieberman-Aiden et al. 2009). Recent characterization of human chromatin using a novel chromosome conformational capture technique brought the fractal globule into the spotlight as a structural model of human chromosome on the scale of up to 10 Mb (Lieberman-Aiden et al. 2009). Here, we present the concept of the fractal globule, comparing it to other states of a polymer and focusing on its properties relevant for the biophysics of chromatin. We then discuss properties of the fractal globule that make it an attractive model for chromatin organization inside a cell. Next, we connect the fractal globule to recent studies that emphasize topological constraints as a primary factor driving formation of chromosomal territories. We discuss how theoretical predictions, made on the basis of the fractal globule model, can be tested experimentally. Finally, we discuss whether fractal globule architecture can be relevant for chromatin packing in other organisms such as yeast and bacteria

    Serotonin Augments Gut Pacemaker Activity via 5-HT3 Receptors

    Get PDF
    Serotonin (5-hydroxytryptamine: 5-HT) affects numerous functions in the gut, such as secretion, muscle contraction, and enteric nervous activity, and therefore to clarify details of 5-HT's actions leads to good therapeutic strategies for gut functional disorders. The role of interstitial cells of Cajal (ICC), as pacemaker cells, has been recognised relatively recently. We thus investigated 5-HT actions on ICC pacemaker activity. Muscle preparations with myenteric plexus were isolated from the murine ileum. Spatio-temporal measurements of intracellular Ca2+ and electric activities in ICC were performed by employing fluorescent Ca2+ imaging and microelectrode array (MEA) systems, respectively. Dihydropyridine (DHP) Ca2+ antagonists and tetrodotoxin (TTX) were applied to suppress smooth muscle and nerve activities, respectively. 5-HT significantly enhanced spontaneous Ca2+ oscillations that are considered to underlie electric pacemaker activity in ICC. LY-278584, a 5-HT3 receptor antagonist suppressed spontaneous Ca2+ activity in ICC, while 2-methylserotonin (2-Me-5-HT), a 5-HT3 receptor agonist, restored it. GR113808, a selective antagonist for 5-HT4, and O-methyl-5-HT (O-Me-5-HT), a non-selective 5-HT receptor agonist lacking affinity for 5-HT3 receptors, had little effect on ICC Ca2+ activity. In MEA measurements of ICC electric activity, 5-HT and 2-Me-5-HT caused excitatory effects. RT-PCR and immunostaining confirmed expression of 5-HT3 receptors in ICC. The results indicate that 5-HT augments ICC pacemaker activity via 5-HT3 receptors. ICC appear to be a promising target for treatment of functional motility disorders of the gut, for example, irritable bowel syndrome

    Guidelines for acute ischemic stroke treatment: part I

    Full text link

    Paleotectonics of a complex Miocene half graben formed above a detachment fault: The Diligencia basin, Orocopia Mountains, Southern California

    No full text
    The Diligencia basin in the Orocopia Mountains of southeastern California has been one of the primary areas used to test the hypothesis of more than 300 km of dextral slip along the combined San Andreas/San Gabriel fault system. The Orocopia Mountains have also been the focus of research on deposition, deformation, metamorphism, uplift and exposure of the Orocopia Schist, which resulted from fl at-slab subduction during the latest Cretaceous/Paleogene Laramide orogeny. The uppermost Oligocene/Lower Miocene Diligencia Formation consists of more than 1500 m of nonmarine strata, including basalt fl ows and intrusions dated at 24-21 Ma. The base of the Diligencia Formation sits nonconformably on Proterozoic augen gneiss and related units along the southern basin boundary, where low-gradient alluvial fans extended into playa-lacustrine environments to the northeast. The northern basal conglomerate of the Diligencia Formation, which was derived from granitic rocks in the Hayfield Mountains to the north, sits unconformably on the Eocene Maniobra Formation. The northern basal conglomerate is overlain by more than 300 m of mostly red sandstone, conglomerate, mudrock and tuff. The basal conglomerate thins and fines westward; paleocurrent measurements suggest deposition on alluvial fans derived from the northeast, an interpretation consistent with a NW-SE-trending normal fault (present orientation) as the controlling structure of the half graben formed during early Diligencia deposition. This fault is hereby named the Diligencia fault, and is interpreted as a SW-dipping normal fault, antithetic to the Orocopia Mountains detachment and related faults. Deposition of the upper Diligencia Formation was infl uenced by a NE-dipping normal fault, synthetic with, and closer to, the exposed detachment faults. The Diligencia Formation is nonconformable on Mesozoic granitoids in the northwest part of the basin. Palinspastic restoration of the Orocopia Mountain area includes the following phases, each of which corresponds with microplate-capture events along the southern California continental margin: (1) Reversal of 240 km of dextral slip on the San Andreas fault (including the Punchbowl and other fault strands) in order to align the San Francisquito-Fenner-Orocopia Mountains detachment-fault system at 6 Ma. (2) Reversal of N-S shortening and 90° of clockwise rotation of the Diligencia basin and Orocopia Mountains, and 40 km of dextral slip on the San Gabriel fault between 12 and 6 Ma. (3) Reversal of 40° of clockwise rotation of the San Gabriel block (including Soledad basin and Sierra Pelona) and 30 km of dextral slip on the Canton fault between 18 and 12 Ma. These palinspastic restorations result in a coherent set of SW-NE-trending normal faults, basins (including Diligenica basin) and antiformal structures consistent with NW-SE-directed crustal extension from 24 to 18 Ma, likely resulting from the unstable configuration of the Mendocino triple junction. © 2014 Geological Society of America
    corecore