611 research outputs found

    Horizon Mass Theorem

    Full text link
    A new theorem for black holes is found. It is called the horizon mass theorem. The horizon mass is the mass which cannot escape from the horizon of a black hole. For all black holes: neutral, charged or rotating, the horizon mass is always twice the irreducible mass observed at infinity. Previous theorems on black holes are: 1. the singularity theorem, 2. the area theorem, 3. the uniqueness theorem, 4. the positive energy theorem. The horizon mass theorem is possibly the last general theorem for classical black holes. It is crucial for understanding Hawking radiation and for investigating processes occurring near the horizon.Comment: A new theorem for black holes is establishe

    See a Black Hole on a Shoestring

    Full text link
    The modes of vibration of hanging and partially supported strings provide useful analogies to scalar fields travelling through spacetimes that admit conformally flat spatial sections. This wide class of spacetimes includes static, spherically symmetric spacetimes. The modes of a spacetime where the scale factor depends as a power-law on one of the coordinates provide a useful starting point and yield a new classification of these spacetimes on the basis of the shape of the string analogue. The family of corresponding strings follow a family of curves related to the cycloid, denoted here as hypercycloids (for reasons that will become apparent). Like the spacetimes that they emulate these strings exhibit horizons, typically at their bottommost points where the string tension vanishes; therefore, hanging strings may provide a new avenue for the exploration of the quantum mechanics of horizons.Comment: 5 pages, 1 figure, extensive changes to refect version accepted to PR

    Electrically charged fluids with pressure in Newtonian gravitation and general relativity in d spacetime dimensions: theorems and results for Weyl type systems

    Full text link
    Previous theorems concerning Weyl type systems, including Majumdar-Papapetrou systems, are generalized in two ways, namely, we take these theorems into d spacetime dimensions (d≥4{\rm d}\geq4), and we also consider the very interesting Weyl-Guilfoyle systems, i.e., general relativistic charged fluids with nonzero pressure. In particular within Newton-Coulomb theory of charged gravitating fluids, a theorem by Bonnor (1980) in three-dimensional space is generalized to arbitrary (d−1)>3({\rm d}-1)>3 space dimensions. Then, we prove a new theorem for charged gravitating fluid systems in which we find the condition that the charge density and the matter density should obey. Within general relativity coupled to charged dust fluids, a theorem by De and Raychaudhuri (1968) in four-dimensional spacetimes in rendered into arbitrary d>4{\rm d}>4 dimensions. Then a theorem, new in d=4{\rm d}=4 and d>4{\rm d}>4 dimensions, for Weyl-Guilfoyle systems, is stated and proved, in which we find the condition that the charge density, the matter density, the pressure, and the electromagnetic energy density should obey. This theorem comprises, as particular cases, a theorem by Gautreau and Hoffman (1973) and results in four dimensions by Guilfoyle (1999). Upon connection of an interior charged solution to an exterior Tangherlini solution (i.e., a Reissner-Nordstr\"om solution in d-dimensions), one is able to give a general definition for gravitational mass for this kind of relativistic systems and find a mass relation with the several quantities of the interior solution. It is also shown that for sources of finite extent the mass is identical to the Tolman mass.Comment: 27 page

    Quantum Corrections to the Reissner-Nordstrom and Kerr-Newman Metrics: Spin 1

    Get PDF
    A previous evaluation of one-photon loop corrections to the energy-momentum tensor has been extended to particles with unit spin and speculations are presented concerning general properties of such forms.Comment: 21 pages, 1 Figur

    Strange stars in Krori-Barua space-time

    Full text link
    The singularity space-time metric obtained by Krori and Barua\cite{Krori1975} satisfies the physical requirements of a realistic star. Consequently, we explore the possibility of applying the Krori and Barua model to describe ultra-compact objects like strange stars. For it to become a viable model for strange stars, bounds on the model parameters have been obtained. Consequences of a mathematical description to model strange stars have been analyzed.Comment: 9 pages (two column), 12 figures. Some changes have been made. " To appear in European Physical Journal C
    • …
    corecore