18 research outputs found

    A new carbohydrate-active oligosaccharide dehydratase is involved in the degradation of ulvan

    Get PDF
    Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Delta-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoARha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharide

    Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901(T)

    No full text
    Carbohydrates are the product of carbon dioxide fixation by algae in the ocean. Their polysaccharides are depolymerized by marine bacteria, with a vast array of carbohydrate-active enzymes. These enzymes are important tools to establish biotechnological processes based on algal biomass. Green tides, which cover coastal areas with huge amounts of algae from the genus Ulva, represent a globally rising problem, but also an opportunity because their biomass could be used in biorefinery processes. One major component of their cell walls is the anionic polysaccharide ulvan for which the enzymatic depolymerization remains largely unknown. Ulvan lyases catalyze the initial depolymerization step of this polysaccharide, but only a few of these enzymes have been described. Here, we report the cloning, overexpression, purification, and detailed biochemical characterization of the endolytic ulvan lyase from Formosa agariphila KMM 3901(T) which is a member of the polysaccharide lyase family PL28. The identified biochemical parameters of the ulvan lyase reflect adaptation to the temperate ocean where the bacterium was isolated from a macroalgal surface. The NaCl concentration has a high influence on the turnover number of the enzyme and the affinity to ulvan. Divalent cations were shown to be essential for enzyme activity with Ca2+ likely being the native cofactor of the ulvan lyase. This study contributes to the understanding of ulvan lyases, which will be useful for future biorefinery applications of the abundant marine polysaccharide ulvan

    Oxidative demethylation of algal carbohydrates by cytochrome P450 monooxygenases

    No full text
    Sugar O-methylation shields algal polysaccharides against microbial hydrolytic enzymes. Here, we describe cytochrome P450 monooxygenases from marine bacteria that, together with appropriate redox-partner proteins, catalyze the oxidative demethylation of 6-O-methyl-d-galactose, which is an abundant monosaccharide of the algal polysaccharides agarose and porphyran. This previously unknown biological function extends the group of carbohydrate-active enzymes to include the class of cytochrome P450 monooxygenases
    corecore