7 research outputs found
Photoacoustic Spectroscopy For Depth-profile Analysis And Herbicide Monitoring In Leaves
Depth profiles of double-layer biological samples obtained by photoacoustic spectroscopy were studied using the two-signal phase-resolved method. The application of the method was demonstrated by singling out the spectra of the cuticle and the pigment layers of a leaf, and the pericarps and the endosperm layers of a corn kernel. The use of the method for monitoring temporal changes occurring in a leaf under the action of a herbicide was also investigated.112111487149
Anacardic Acid Derivatives From Brazilian Propolis And Their Antibacterial Activity
Propolis is a sticky, gummy, resinous substance collected by honeybees (Apis mellifera L.) from various plant sources, which has excellent medicinal properties. This paper describes the isolation and identification of triterpenoids and anacardic acid derivatives from Brazilian propolis and their antibacterial activity. Their structures were elucidated by 1H and 13C NMR, including uni- and bidimensional techniques; in addition, comparisons were made with data from academic literature. These compounds were identified as: cardanols (1a + 1b), cardols (2a + 2b), monoene anacardic acid (3), α-amirine (4), β-amirine (5), cycloartenol (6), 24-methylene- cycloartenol (7) and lupeol (8). The determination of the position of the double bond after a reaction with Dimethyl disulfide (DMDS) is described for the phenol derivatives. The ethanolic extract was tested in vitro for antimicrobial activity by using the disc diffusion method and it showed significant results against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Shigella spp.3335358Ghisalbert, E.L., (1979) Bee World, 60, p. 59Garcia-Viguera, C., Greenaway, W., Watley, F.R., (1992) Z. Naturforsch, 47 c, p. 634. , TubigenUsia, T., Banskota, A.H., Tezuka, Y., Midorikawa, K., Matsushige, K., Kadota, S., (2002) J. Nat. Prod, 65, p. 673Marcucci, M.C., (1995) Apidologie, 26, p. 83Burdock, G.A., (1998) Food Chem. Toxicol, 36, p. 347Banskota, A.H., Nagaoka, T., Sumioka, L.Y., Tezuka, Y., Awale, S., Midorikawa, K., Matsushige, K., Kadota, S.J., (2002) Ethnopharmacology, 80, p. 67Bankova, V.S., Diulgerov, A., Popov, S.S.S., Evstatieva, L., Kuleva, L., Pureb, O., Zamjasan, Z., (1992) Apidologie, 23, p. 79Bankova, V., Castro, S.L., Marcucci, M.C., (2000) Apidologie, 31, p. 3Pereira, A.S., Nascimento, E.A., Aquino Neto, F.R., (2002) Z. Naturforsch, 57 c, p. 721Silva, M.S.S., Citó, A.M.G.L., Chaves, M.H., Lopes, J.A.D., (2005) Quím. Nova, 28, p. 801De Lima, S.G., (2005) Síntese e Identificação de Biomarcadores em Óleos da Bacia de Campos e Bacia Potiguar: Identificação de 3-alquil-esteranos, , Tese de Doutorado. Unicamp, Instituto de Química, Campinas-SP, Brasil, 350pWang, C., (1998) The role of lipids in disease resistance and fruit ripening tomato, , Ph.D. Thesis. Rutgers University, New Brunswick, N.JFRANCIS, G.W., VELAND, K., (1981) J. Chromatogr, 219, pp. 379-384Lizhi Zhu. Investigating The Biosynthesis Of Polyacetylenes: Synthesis of Deuterated Linoleic Acids & Mechanism Studies of DMDS Addition to 1,4-Enynes. Ph.D. Thesis. Miami University-The Graduate School, Usa. Oxford, Ohio, 2003, 104pMurray, P.R., Drew, W.L., Kobayasai, G.S., Thompson, J.R., (1990) Microbiologia Médica, , Guanabara Koogan, Rio de JaneiroRoque, N.F., Olea, R.S.G., (1990) Quim. Nova, 13, p. 278Mahato, S.B., Kundu, A.P., (1994) Phytochemistry, 37, p. 1517F. W. Wehrli, T. Nishida, The Use of Carbon-13 Nuclear Magnetic Resonance Spectroscopy in Natural Product Chemistry, in Zechmeister, L. et al. Progress in the Chemistry of Organic Natural Products. Wi Springer-Verlag, New York, 1979. p.93Radics, L., Kajtarperedy, M.C., Corsano, S., Standoli, L., (1975) Tetrahedron. Lett, 48, p. 4287Gedam, P.H., Sampathkumaran, P.S., Sivasamban, M.A., (1972) Indian J. Chem, 10, p. 388Pretsch, E., Clerc, T., Seibl, J., Simon, W., (1989) Tables of spectral data for structure determination of organic compounds, , 2nd ed, Springer-Verlag, New YorkCarballeira, N.M., Shalabi, F., Cruz, C., (1994) Tetrahedron Lett, 35, p. 5575Christie, W.W., (1997) Lipid Technol, 9, p. 17Tyman, J.H.P., Jacobs, N., (1971) J. Chromatogr, 54, p. 83Christov, R., Trusheva, B., Papova, M., Bankova, V., Bertrand, M., (2005) Nat. Prod. Res, 19, p. 673Kubo, I., Komatsu, S., Ochi, M.J., (1986) Agric. Food Chem, 34, p. 970Itokawa, H., Totsuka, N., Nakahara, K., Takeya, K., Lepoittevin, J.P., Asakawa, Y., (1987) Chem. Pharm. Bull, 35, p. 3016Itokawa, H., Totsuka, N., Nakahara, K., Maezuru, M., Takeya, K., Kondo, M., Inamatsu, M., Morita, H., (1989) Chem. Pharm. Bull, 37, p. 1619Himejima, M., Kubo, I., (1991) J. Agric. Food Chem, 39, p. 418Kubo, I., Muroi, H., Himejima, M., Yamagiwa, Y., Mera, H., Tokushima, K., Ohta, S., Kamikawa, T., (1993) J. Agric. Food Chem, 41, p. 1016Kubo, I., Ochi, M., Vieira, P.C., Komatsu, S., (1993) J. Agric. Food Chem, 41, p. 1012Muroi, H., Kubo, I., (1993) J. Agric. Food Chem, 41, p. 1780Amorati, R., Pe dulli, G.F., Valgimgli, L., Attanasi, O.A., Filippone, P., Fiorucci, C., Saladino, R., (2001) J. Chem. Soc., Perkin Trans., 2, p. 2142Masuoka, N., Kubo, I., (2004) Biochimi. Biophysi. Acta, 1688, p. 245Siegers, C.P., (1999) Phytomedicine, 6, p. 281Westendorf, J., Regan, J., (2000) Pharmazie, 55, p. 864Hecker, H., Johannisson, R., Koch, E., Siegers, C.P., (2002) Toxicology, 177, p. 167Trevisan, M.T.S., Pfundstein, B., Haubner, R., Wurtele, G., Spiegelhalder, B., Bartsch, H., Owen, R.W., (2006) Food Chem. Toxicol, 44, p. 18
Chemical Composition Of Essential Oils Of Croton Hirtus L'her From Piauí (brazil)
The essential oils from the fresh leaves of Croton hirtus from two locations, Teresina and Simões in Piauí State, located in northeastern Brazil were obtained by hydrodistillation and analyzed by gas chromatography-flame ionization detection (GC-FID) and gas chromatography-mass spectrometry (GC-MS) techniques and further confirmed by 1H and 13C NMR. The main compounds found in the oil of the leaves from C. hirtus collected at Simões were spathulenol (26.7%), E-caryophyllene (10.0%), bicyclogermacrene (9.5%), α-cadinol (7.7%) and cubenol (7.0%). At Teresina, the harvest was carried out in two different months and in three periods of the day, and E-caryophyllene (27.9- 37.3%), germacrene D (6.3-33.7%), α-cadinene (7.0-16.1%), δ-cadinene (1.8-13.5%) and α-humulene (3.6-4.6%) were identified as the major constituents. The brine shrimp (Artemia salina Leach) lethality bioassay, carried out to investigate the toxicity of the essential oils, showed 50% lethal concentration (LC 50) values of 11.24 and 11.85 μg/ mL for samples from Teresina and Simões, respectively. © 2012 Taylor & Francis.244371376Berry, P.E., Hipp, A.L., Wurdack, K.J., Van Ee, B., Riina, R., Molecular phylogenetics of the giant genus Croton and tribe Crotoneae (Euphorbiaceae sensu stricto) using ITS and trnL-trnF DNA sequence data (2005) American Journal of Botany, 92 (9), pp. 1520-1534Vigor, C., Fabre, N., Fouraste, I., Moulis, C., Three clerodane diterpenoids from Croton eluteria Bennett (2001) Phytochemistry, 57 (8), pp. 1209-1212. , DOI 10.1016/S0031-9422(01)00183-2, PII S0031942201001832Puebla, P., Lopez, J.L., Guerrero, M., Carron, R., Martin, M.L., San Roman, L., San Feliciano, A., Neo-clerodane diterpenoids from Croton schiedeanus (2003) Phytochemistry, 62 (4), pp. 551-555. , DOI 10.1016/S0031-9422(02)00516-2, PII S0031942202005162Roengsumran, S., Petsom, A., Kuptiyanuwat, N., Vilaivan, T., Ngamrojnavanich, N., Chaichantipyuth, C., Phuthong, S., Cytotoxic labdane diterpenoids from Croton oblongifolius (2001) Phytochemistry, 56 (1), pp. 103-107. , DOI 10.1016/S0031-9422(00)00358-7, PII S0031942200003587Salatino, A., Salatino, M.L.F., Negri, G., Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae) (2007) J. Braz. Chem. Soc., 18, pp. 11-33De Morais, S.M., Catunda Jr., F.E.A., Da Silva, A.R.A., Neto, J.S.M., Rondina, D., Leal Cardoso, J.H., Antioxidant activity of essential oils from northeastern Brazilian Croton species (2006) Quimica Nova, 29 (5), pp. 907-910. , http://www.scielo.br/pdf/qn/v29n5/31047.pdfDa Costa, J.G.M., Rodrigues, F.F.G., Angélico, E.C., Pereira, C.K.B., De Souza, E.O., Caldas, G.F.R., Silva, M.R., Dos Santos, P.F., Composição química e avaliação da atividade antibacteriana e toxicidade do óleo essencial de Croton zehntneri (variedade estragol) (2008) Rev. Bras. Farmacogn., 18, pp. 583-586Brasil, D.S.B., Muller, A.H., Guilhon, G.M.S.P., Alves, C.N., Andrade, E.H.A., Da Silva, J.K.R., Maia, J.G.S., Essential oil composition of Croton palanostigma Klotzsch from north Brazil (2009) J. Braz. Chem. Soc., 20, pp. 1188-1192Fuentes, J.C., Castro, V., Jakupovic, J., Murillo, R., Diterpenes and other components of Croton hirtus (Euphorbiaceae) (2004) Revista de Biologia Tropical, 52 (1), pp. 269-285Adams, R.P., (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectroscopy, , 4th ed. Allured Publ. Corp, Carol Stream, ILPino, J.A., Marbot, R., Vazquez, C., Characterization of volatiles in strawberry guava (Psidium cattleianum Sabine) fruit (2001) Journal of Agricultural and Food Chemistry, 49 (12), pp. 5883-5887. , DOI 10.1021/jf010414rYayli, N., Yasar, A., Gulec, C., Usta, A., Kolayli, S., Coskuncelebi, K., Karaoglu, S., Composition and antimicrobial activity of essential oils from Centaurea sessilis and Centaurea armena (2005) Phytochemistry, 66 (14), pp. 1741-1745. , DOI 10.1016/j.phytochem.2005.04.006, PII S0031942205001615, Structure ElucidationMcLaughlin, J.L., Chang, C.J., Smith, D.L., Bench-top bioassays for the discovery of bioactive natural products: An update (1991) Studies in Natural Products Chemistry, pp. 383-409. , Edits., J.L. Mclaughlin, C.J. Chang and D.L. Smith, Elsevier Science Publishers, AmsterdamParra, A.L., Yhebra, R.S., Sardiñas, I.G., Buela, L.I., Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts (2001) Phytomedicine, 8, pp. 395-400Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Brine shrimp: A convenient general bioassay for active plant constituents (1982) Planta Medica, 45 (1), pp. 31-34Alencar, J.W., Craveiro, A.A., Matos, F.J.A., MaçAdo, M.I.L., Kovats Indices simulation in essential oil analysis (1990) Quím. Nova., 13, pp. 282-284Silva, C.M., Bolzan, A.B., Mallmann, C.A., Pozzatti, P., Alves, S.H., Heinzmann, B.M., Sesquiterpenoids of Senecio bonariensis Hook. & Arn (2010) Asteraceae. Rev. Bras. Farmacogn., 20, pp. 87-92Ragasa, C.Y., Ganzon, J., Hofilena, J., Tamboong, B., Rideout, J.A., A new furanoid diterpene from Caesalpinia pulcherrima (2003) Chemical and Pharmaceutical Bulletin, 51 (10), pp. 1208-1210. , http://www.jstage.jst.go.jp/article/cpb/51/10/1208/_pdf, DOI 10.1248/cpb.51.1208Webster, B., Gezan, S., Bruce, T., Hardie, J., Pickett, J., Between plant and diurnal variation in quantities and ratios of volatiles compounds emitted by Vicia faba plants (2010) Phytochemistry, 71, pp. 81-89Barra, A., Factors affecting chemical variability of essential oils: A review of recent developments (2009) Nat. Prod. Commun., 4, pp. 1147-115
Structure-drift Time Relationships In Ion Mobility Mass Spectrometry
Ion mobility spectrometry (IMS) separates ions while they travel through a buffer gas under the influence of an electrical field. The separation is affected by mass and charge but most particularly by shape (collision cross section). When coupled to MS, IMS-MS offers therefore a powerful tool for structural elucidation and isomer separation. Systematic studies aimed to compare and quantitate the effects of structural changes on drift time such as length and ramification of carbon chain, unsaturation, geometrical isomerism (cis/trans isomers for instance), cyclization and ring size are, however, scarce. Herein we used traveling wave ion mobility mass spectrometry (TWIM-MS) to systematically evaluate the relationship between structure and drift time. For that, a series of deprotonated carboxylic acids were used as model ions with a carboxylate "charge tag" for gas phase MS manipulation. Carboxylic acids showed a near linear correlation between the increase of carbon number and the increase of collision cross section (CCS). The number of double bonds changes slightly the CCS of unsaturated acids. No differences in drift time and no significant differences in CCS of cis- and trans-double bond of oleic and elaidic acids were observed. Cyclization considerably reduces the CCS. In cyclic carboxylic acids, the increase of double bonds and aromatization significantly reduces the CCS and the drift times. The use of a more polarizable drift gas, CO2, improved in some cases the separation, as for biomarker isomers of steranoic acids. The β-isomer (cis-decaline) has smaller CCS and therefore displayed lower drift time compared to the α-isomer (trans-decaline). Structural changes revealed by calculations were correlated with trends in drift times. © 2013 Springer-Verlag Berlin Heidelberg.162117132Cohan, M.J., Karasek, F.J., (1970) J Chromatogr Sci, 8, pp. 330-337Stach, J., Baumbach, J.I., (2002) Int J Ion Mobility Spectrom, 5, pp. 1-21Kanu, A.B., Dwivedi, P., Tam, M., Matz, L., Hill, H.H., (2008) J Mass Spectrom, 43, pp. 1-22Clemmer, D.E., Jarrold, M.F., (1997) J Mass Spectrom, 32, pp. 577-592Hoaglund-Hyzer, C.S., Counterman, A.E., Clemmer, D.E., (1999) Chem Rev, 99, pp. 3037-3080von Helden, G., Wyttenbach, T., Bowers, M.T., (1995) Science, 267, pp. 1483-1485Jarrold, M.F., (2000) Annu Rev Phys Chem, 51, pp. 179-207Hoaglund-Hyzer, C.S., Lee, Y.J., Counterman, A.E., Clemmer, D.E., (2002) Anal Chem, 74, pp. 992-1006Valentine, S.J., Counterman, A.E., Hoaglund, C.S., Reilly, J.P., Clemmer, D.E., (1998) J Am Soc Mass Spectrom, 9, pp. 1213-1216Benassi, M., Corilo, Y.E., Uria, D., Augusti, R., Eberlin, M.N., (2009) J Am Soc Mass Spectrom, 20, pp. 269-277Lalli, P.M., Iglesias, B.A., Deda, D.K., Toma, H.E., de Sa, G.F., Daroda, R.J., Arali, K., Eberlin, M.N., (2012) Rapid Commun Mass Spectrom, 26, pp. 263-268Santos, J.J., Toma, S.H., Lalli, P.M., Riccio, M.F., Eberlin, M.N., Toma, H.E., Araki, K., (2012) Analyst, 137, pp. 4045-4051Lalli, P.M., Iglesias, B.A., Toma, H.E., de Sa, G.F., Daroda, R.J., Silva Filho, J.C., Szulejko, J.E., Eberlin, M.N., (2012) J Mass Spectrom, 47, pp. 712-719Fasciotti, M., Gomes, A.F., Gozzo, F.C., Iglesias, B.A., de Sa, G.F., Daroda, R.J., Toganoh, M., Eberlin, M.N., (2012) Org Biomol Chem, 10, pp. 8396-8402Clemmer, D.E., Hudgins, R.R., Jarrold, M.F., (1995) J Am Chem Soc, 117, pp. 10141-10142Ruotolo, B.T., Tate, C.C., Russell, D.H., (2004) J Am Soc Mass Spectrom, 15, pp. 870-878Bohrer, B.C., Mererbloom, S.I., Koeniger, S.L., Hilderbrand, A.E., Clemmer, D.E., (2008) Annu Rev Anal Chem, 1, pp. 293-327Fernandez-Lima, F.A., Becker, C., McKenna, A.M., Rodgers, R.P., Marshall, A.G., Russell, D.H., (2009) Anal Chem, 81, pp. 9941-9947Ahmed, A., Cho, Y.J., No, M., Koh, J., Tomczyk, N., Giles, K., Yoo, J.S., Kim, S., (2011) Anal Chem, 83, pp. 77-83Trimpin, S., Tan, B., Bohrer, B.C., O'Dell, D.K., Merenbloom, S.I., Pazos, M.X., Clemmer, D.E., Walker, J.M., (2009) Int J Mass Spectrom, 287, pp. 58-69Castro-Perez, J., Roddy, T.P., Nibbering, N.M.M., Shah, V., McLaren, D.G., Previs, S., Attygalle, A.B., Hankemeier, T., (2011) J Am Soc Mass Spectrom, 22, pp. 1552-1567Marshall, A.G., Rodgers, R.P., (2004) Acc Chem Res, 37, pp. 53-59Rodgers, R.P., Schaub, T.M., Marshall, A.G., (2005) Anal Chem, 77, pp. 20A-27AHughey, C.A., Rodgers, R.P., Marshall, A.G., Qian, K., Robbins, W.K., (2002) Org Geochem, 33, pp. 743-759Hughey, C.A., Rodgers, R.P., Marshall, A.G., Walters, C.C., Qian, K., Mankiewicz, P., (2004) Org Geochem, 35, pp. 863-880Klein, G.C., Rodgers, R.P., Marshall, A.G., (2006) Fuel, 85, pp. 2071-2080Mapolelo, M.M., Stanford, L.A., Rodgers, R.P., Yen, A.T., Debord, J.D., Asomaning, S., Marshall, A.G., (2009) Energy Fuel, 23, pp. 349-355Mapolelo, M.M., Rodgers, R.P., Blakney, G.T., Yen, A.T., Asomaning, S.A., Marshall, A.G., (2011) Int J Mass Spectrom, 300, pp. 149-157Schaub, T.M., Hendrickson, C.L., Horning, S., Quinn, J.P., Senko, M.W., Marshall, A.G., (2008) Anal Chem, 80, pp. 3985-3990Marshall, A.G., Rodgers, R.P., (2008) Proc Natl Acad Sci USA, 105, pp. 18090-18095Giles, K., Pringle, S.D., Worthington, K.R., Little, D., Wildgoose, J.L., Bateman, R.H., (2004) Rapid Commun Mass Spectrom, 18, pp. 2401-2414Pringle, S.D., Giles, K., Wildgoose, J.L., Williams, J.P., Slade, S.E., Thalassinos, K., Bateman, R.H., Scrivens, J.H., (2007) Int J Mass Spectrom, 261, pp. 1-12Karpas, Z., Berant, Z., (1989) J Phys Chem, 93, pp. 3021-3025Beegle, L.W., Kanik, I., Matz, L., Hill, H.H., (2002) Int J Mass Spectrom, 216, pp. 257-268Petta, T., (2012), PhD Thesis FFCLRP-USPLopes, J.A.D., Santos-Neto, E.V., Mello, M.R., Reis, F.A.M., (1997) Org Geochem, 26, pp. 787-790Shvartsburg, A.A., Smith, R.D., (2008) Anal Chem, 80, pp. 9689-9699http://www.gaussian.com/Mesleh, M.F., Hunter, J.M., Shvartsburg, A.A., Schatz, G.C., Jarrold, M.F., (1996) J Phys Chem A, 100, pp. 16082-16086. , Erratum (1997) J Phys Chem A 101: 968Shvartsburg, A.A., Jarrold, M.F., (1996) J Chem Phys Lett, 261, pp. 86-91Bush, M.F., Hall, Z., Giles, K., Hoyes, J., Robinson, C.V., Ruotolo, B.T., (2010) Anal Chem, 82, pp. 9557-9565Lopes, J.A.D., Santos-Neto, E.V., Mello, M.R., Koike, L., Marsaioli, A.J., Reis, F.A.M., (1999) Chem Geology, 158, pp. 1-20Rodrigues, D.C., Koike, L., Reis, F.A.M., Alves, H.P., Chang, H.K., Trindade, L.A., Marsaioli, A.J., (2000) Org Geochem, 31, pp. 1209-1222De Lima, S.G., Steffen, R.A., Reis, F.A.M., Koike, L., Santos-Neto, E.V., Cerqueira, J.R., Lopes, J.A.D., (2010) Org Geochem, 41, pp. 325-339Kim, H.I., Johnson, P.V., Beegle, L.W., Beauchamp, J.L., Kanik, I., (2005) J Phys Chem A, 109, pp. 7888-789
Nematódeos resistentes a anti-helmíntico em rebanhos de ovinos e caprinos do estado do Ceará, Brasil
Cytotaxonomic and evolutionary considerations about karyotipic data of fishes from the Iguaçu River Basin in South of Brazil
The cytogenetic data available in the literature about the ichthyofauna of the Iguaçu River basin were analyzed in this review. The ichthyofauna was characterized by the high level of endemism and by the low diversity of species. Twenty-four of the eighty-one species were already karyotyped; six Characiformes, fourteen Siluriformes and four Perciformes. The chromosomal data showed the taxonomic and systematic complexity of the groups. Hypothesis related to the evolution of some Characiformes and Siluriformes groups from the Iguaçu River are proposed, as well as the utilization of karyotypic data for cytotaxonomy.<br>Nesta revisão são analisados os dados citogenéticos disponíveis na literatura relativos à ictiofauna da bacia do Rio Iguaçu, a qual é caracterizada pelo alto grau de endemismo e pela baixa diversidade de espécies. Das oitenta e uma espécies conhecidas, vinte e quatro já foram cariotipadas sendo 6 Characiformes, 14 Siluriformes e 4 Perciformes. Os dados cromossômicos evidenciam a complexidade taxonômica e sistemática dos grupos. São propostas hipóteses relacionadas à evolução de alguns grupos de Characiformes e Siluriformes do Rio Iguaçu, assim como o aproveitamento de dados cariotípicos para a citotaxonomia