5,154 research outputs found

    Biosorption of heavy metals by the bacterial exopolysaccharide fucopol

    Get PDF
    FCT/MCTES (UIDB/04378/2020). Patricia Concordio-Reis acknowledges FCT/MCTES for PhD grant SFRH/BD/131947/2017.Despite the efforts for minimizing the usage of heavy metals, anthropogenic activities still generate high amounts of wastewater containing these contaminants that cause significant health and environmental problems. Given the drawbacks of the conventional physical and chemical methods currently used, natural biosorbents (microbial cells or their products) arise as promising environmentally friendly alternatives. In this study, the binding efficiency of the polysaccharide secreted by Enterobacter A47, FucoPol, towards lead (Pb2+), cobalt (Co2+), copper (Cu2+) and zinc (Zn2+) cations was demonstrated. FucoPol revealed a higher performance for the biosorption of Pb2+, with a maximum overall metal removal of 93.9 ± 5.3% and a specific metal uptake of 41.1 ± 2.3 mg/gEPS, from a Pb2+ solution with an initial concentration of 10 mg/L, by a 5 g/L FucoPol solution. The overall metal removal decreased considerably (≤31.3 ± 1.6%) for higher Pb2+ concentrations (48 and 100 mg/L) probably due to the saturation of FucoPol's binding sites. Pb2+ removal was also less efficient (66.0 ± 8.2%) when a higher FucoPol concentration (10 g/L) was tested. Pb2+ removal efficiency of FucoPol was maximized at pH 4.3, however, it was affected by lower pH values (2.5-3.3). Moreover, the FucoPol's sorption performance was unaffected (overall metal removal: 91.6-93.9%) in the temperature range of 5-40 °C. These findings demonstrate FucoPol's great potential for utilization as a biodegradable and safe biosorbent for treating waters and wastewaters contaminated with Pb2+.publishersversionpublishe

    MicroRNA history : discovery, recent applications and next frontiers

    Get PDF
    We thank the Department of Scientific Publications at The University of Texas MD Anderson Cancer Center for English language editing of the manuscript.Since 1993, when the first small non-coding RNA was identified, our knowledge about microRNAs has grown exponentially. In this review, we focus on the main progress in this field and discuss the most important findings under a historical perspective. In addition, we examine microRNAs as markers ofdisease diagnosis and prognosis, and as new therapeutic targets.M.I.A is supported by a PhD fellowship (SFRH/BD/47031/2008) from FCT (Fundação para a Ciência e Tecnologia) from Portugal. G.A.C. is supported as a Fellow at The University of Texas MD Anderson Research Trust, as a Fellow of The University of Texas System Regents Research Scholar, and by the CLL Global Research Foundation. Work in Dr. Calin’s laboratory was supported in part by NIH, by DoD, by 2009 Seena Magowitz – Pancreatic Cancer Action Network – AACR Pilot Grant and by the U.S./European Alliance for the Therapy of CLL

    Polyhydroxyalkanoates Production by Mixed Microbial Culture under High Salinity

    Get PDF
    PTDC/BTA-BTA/30902/2017 UIDP/04378/2020 UIDB/04378/2020 LA/P/0140/2020The fishing industry produces vast amounts of saline organic side streams that require adequate treatment and disposal. The bioconversion of saline resources into value-added products, such as biodegradable polyhydroxyalkanoates (PHAs), has not yet been fully explored. This study investigated PHA production by mixed microbial cultures under 30 gNaCl/L, the highest NaCl concentration reported for the acclimatization of a PHA-accumulating mixed microbial culture (MMC). The operational conditions used during the culture-selection stage resulted in an enriched PHA-accumulating culture dominated by the Rhodobacteraceae family (95.2%) and capable of storing PHAs up to 84.1% wt. (volatile suspended solids (VSS) basis) for the highest organic loading rate (OLR) applied (120 Cmmol/(L.d)). This culture presented a higher preference for the consumption of valeric acid (0.23 ± 0.03 CmolHVal/(CmolX.h)), and the 3HV monomer polymerization (0.33 ± 0.04 CmmolHV/(CmmolX.h) was higher as well. As result, a P(3HB-co-3HV)) with high HV content (63% wt.) was produced in the accumulation tests conducted at higher OLRs and with 30 gNaCl/L. A global volumetric PHA productivity of 0.77 gPHA/(L.h) and a specific PHA productivity of 0.21 gPHA/(gX.h) were achieved. These results suggested the significant potential of the bioconversion of saline resources into value-added products, such as PHAs.publishersversionpublishe

    The impact of biomass withdrawal strategy on the biomass selection and polyhydroxyalkanoates accumulation of mixed microbial cultures

    Get PDF
    UIDP/04378/2020 UIDB/04378/2020 LA/P/0140/2020 SFRH/BD/110673/2015The production of polyhydroxyalkanoates (PHA) by mixed microbial cultures (MMC) has been studied as an alternative to pure cultures in order to reduce the price of PHA through use of open systems and low-cost substrates, such as agro-industrial sub-products. However, the widespread applicability of this process depends on the optimization of operational factors impacting PHA productivity. This study addresses the impact of biomass withdrawal strategy on the performance of MMC selection reactors and consequently on biomass productivity and global PHA productivity. Two selection reactors were operated in parallel under similar conditions, except for the timing of biomass withdrawal, at the end of the famine phase (Reactor 1, R1) versus at the end of the feast phase (Reactor 2, R2) at an organic loading rate of 100 Cmmol.L−1.d−1 and solids retention time of 4 days. The biomass selected in both conditions had similar PHA storing capacity as shown by the similar yields of PHA per substrate obtained in the accumulation assays; however, R1 reached a higher biomass productivity (about 4-fold higher than R2). This study demonstrated that removing the excess biomass at the end of the famine phase resulted in a much higher global PHA productivity and that the key parameter affecting the global PHA productivity of the 2-stage system was the volumetric biomass productivity. Results obtained provide important insight into how MMC systems can be best operated to maximize PHA productivity.publishersversionpublishe

    MicroRNAs and metastases--the neuroblastoma link

    Get PDF
    [Excerpt] MicroRNAs (miRNAs) are small noncoding RNAs of approximately 22 nucleotides in length that regulate gene expression post-transcriptionally. These small RNAs are fundamental regulators of several cellular processes, such as differentiation, development, apoptosis, proliferation, cell cycle regulation and metabolism, through the binding to 3' untranslated regions, coding sequence or 5' untranslated regions of target messenger RNAs (mRNAs), preventing their translation or causing their degradation.1 A modest change in only one miRNA will affect multiple mRNA targets; consequently, the deregulation of miRNAs has important consequences to the cellular homeostatic stability, and aberrant miRNAs expression patterns have been described in several types of cancer.2 Recently, miRNAs have been implicated in the metastatic process of several tumors such as human breast and colorectal cancers3 and, as reported this issue of Cancer Biology & Therapy by Guo et al. in neuroblastoma.4 These are extracranial solid tumors, arising from neural crest cells, that are most common in infants and children; metastasis, the main cause of death, is present at the time of diagnosis in approximately 60% of patients. (5) [...

    Influence of Dissolved Oxygen Level on Chitin–Glucan Complex and Mannans Production by the Yeast Pichia pastoris

    Get PDF
    LA/P/0140/2020The yeast Pichia pastoris was cultivated under different dissolved oxygen (DO) levels (5, 15, 30 and 50% of the air saturation) to evaluate its impact on the production of the cell-wall polysaccharide chitin–glucan complex (CGC) and mannans. Decreasing the DO level from 50 to 15% had no significant impact on cell growth but substrate conversion into biomass was improved. Under such conditions, a mannans content in the biomass of 22 wt% was reached, while the CGC content in the biomass was improved from 15 to 18 wt%, confirming that the DO level also impacted on P. pastoris cell-wall composition. Overall mannans and CGC volumetric productivity values of 10.69 and 8.67 g/(L. day) were reached, respectively. On the other hand, the polymers’ composition was not significantly affected by decreasing the DO level. These results demonstrated that considerable energy savings can be made in the polysaccharide production process by reducing the DO level during cultivation of P. pastoris by improving the overall polymers’ productivity without altering their composition. This has impact on the polysaccharide production costs, which is of considerable relevance for process scale-up and products’ commercialization.publishersversionpublishe

    The genomic environment around the Aromatase gene: evolutionary insights

    Get PDF
    BACKGROUND: The cytochrome P450 aromatase (CYP19), catalyses the aromatisation of androgens to estrogens, a key mechanism in vertebrate reproductive physiology. A current evolutionary hypothesis suggests that CYP19 gene arose at the origin of vertebrates, given that it has not been found outside this clade. The human CYP19 gene is located in one of the proposed MHC-paralogon regions (HSA15q). At present it is unclear whether this genomic location is ancestral (which would suggest an invertebrate origin for CYP19) or derived (genomic location with no evolutionary meaning). The distinction between these possibilities should help to clarify the timing of the CYP19 emergence and which taxa should be investigated. RESULTS: Here we determine the "genomic environment" around CYP19 in three vertebrate species Homo sapiens, Tetraodon nigroviridis and Xenopus tropicalis. Paralogy studies and phylogenetic analysis of six gene families suggests that the CYP19 gene region was structured through "en bloc" genomic duplication (as part of the MHC-paralogon formation). Four gene families have specifically duplicated in the vertebrate lineage. Moreover, the mapping location of the different paralogues is consistent with a model of "en bloc" duplication. Furthermore, we also determine that this region has retained the same gene content since the divergence of Actinopterygii and Tetrapods. A single inversion in gene order has taken place, probably in the mammalian lineage. Finally, we describe the first invertebrate CYP19 sequence, from Branchiostoma floridae. CONCLUSION: Contrary to previous suggestions, our data indicates an invertebrate origin for the aromatase gene, given the striking conservation pattern in both gene order and gene content, and the presence of aromatase in amphioxus. We propose that CYP19 duplicated in the vertebrate lineage to yield four paralogues, followed by the subsequent loss of all but one gene in vertebrate evolution. Finally, we suggest that agnathans and lophotrocozoan protostomes should be investigated for the presence of aromatase

    Determination of seventeen endocrine disruptor compounds and their spatial and seasonal distribution in Ria Formosa Lagoon (Portugal)

    Get PDF
    In spite of its outstanding ecological and touristic importance the Ria Formosa Lagoon shows signs of anthropogenic pollution. Nonetheless, until the present survey no studies had ever documented the measurement of natural and pharmaceutical estrogens (17β-estradiol, estrone, and 17α-ethynylestradiol), xenoestrogenic industrial pollutants (4-octylphenol, 4- nonylphenol, and their mono and diethoxylates and bisphenol A), phytoestrogens (formononetin, biochanin A, daidzein, genistein), and sitosterol in this area. The 17 compounds measured herein are known as endocrine disrupters (EDCs) and act over the endocrine system even in few amounts (ng L−1–μg L−1). Thus to conclude about the influx of EDCs in the lagoon, water samples were taken every 2 months, during 1 year (2010), in low tide at nine sites distributed along the coastline. Water samples (1 L) were preconcentrated in the Oasis HLB cartridges and cleaned in silica cartridges before their analysis by GC-MS. Data showed the ubiquitous presence of potentially hazardous amounts of estrogens (particularly of ethynylestradiol, up to 24.3 ng L−1), nonylphenol (up to 547 ng L−1), and sitosterol (up to 12,300 ng L−1), mainly in summer, suggesting that the increase of the local number of inhabitants (tourists), the rise of the water temperature (up to 26 °C), and the blooming of local flora may interfere with the water quality parameters. This makes the lagoon a potential model to study. Taking into account the data, it was concluded that there are conditions for the occurrence of endocrine disruption in aquatic animals, even in areas included in the natural park of the Formosa. Besides, both the high amounts of un-ionized ammonia (up to 0.3 mg L−1) and phosphates (up to 1.6 mg L−1) my pose risks for local fauna and humans.This work was financially supported by FEDER funds through the Competitiveness and Trade Expansion Program—COMPETE and by National Funds provided by Fundação para a Ciência e a Tecnologia (FCT), via the project PTDC/MAR/70436/2006

    Functional and genomic characterization of Komagataeibacter uvaceti FXV3, a multiple stress resistant bacterium producing increased levels of cellulose

    Get PDF
    Funding Information: This work was supported by the Applied Molecular Biosciences Unit - UCIBIO which is financed by national funds from FCT ( UIDB/04378/2020). Funding Information: Funding from INTERFACE Programme, through the Innovation, Technology and Circular Economy Fund (FITEC), is gratefully acknowledged. Publisher Copyright: © 2021Bacterial cellulose is one of the most promising biomaterials for the development of a wide array of novel biotechnological solutions. Nevertheless, the commercial production of bacterial cellulose is still a challenge and obtaining novel strains presenting increased cellulose biosynthesis and stress resistance properties is of extreme importance. This work demonstrates the increased stress resistance, cellulose production abilities, and overall genomic properties of Komagataeibacter uvaceti FXV3, a novel cellulose-producing and stress resistant strain isolated from a fermented grape must. K. uvaceti FXV3 was able to grow under several stress conditions, including the presence of high concentrations of ethanol (up to 7.5 % v/v), a trait that is not observed in the model strain K. xylinus CECT 7351T. Moreover, K. uvaceti FXV3 produced increased concentrations of cellulose (4.31 mg/mL, 7 days after inoculation-DAI) when compared to K. xylinus CECT 7351T (1.42 mg/mL, 7 DAI). Moreover, the detailed analysis of strain FXV3 genome revealed the presence of several genes involved in cellulose and acetan biosynthesis, quorum-sensing and quenching mechanisms, carbohydrate, amino acid, alcohol and aldehyde metabolism, as well as several other genes involved in stress resistance. Additionally, comparative genomic analysis revealed the increased prevalence of stress resistance genes in K. uvaceti FXV3 when compared to K. xylinus CECT 7351T. Ultimately, this study reveals the increased biotechnological potential of K. uvaceti FXV3 and brings new insights into the genetics behind Komagataeibacter stress resistance and cellulose production abilities.publishersversionpublishe

    Exopolysaccharide production by the marine bacterium Alteromonas macleodii Mo169 using fruit pulp waste as the sole carbon source

    Get PDF
    project LA/P/0140/202019 of the Associate Laboratory Institute for Health and Bioeconomy – i4HB. Publisher Copyright: © 2023 The Author(s)A sugar-rich apple pulp waste generated from fruit processing for juice production was used as the sole carbon source for the cultivation of Alteromonas macleodii Mo169, a marine bacterium known for its EPS-secreting ability. The strain efficiently utilized the glucose and fructose present in the apple pulp waste, reaching biomass and EPS production of 9.20 ± 0.61 and 3.51 ± 0.08 g L−1, respectively, in 24-hour bioreactor cultivation. Two high molecular weight (Mw) fractions (1.7 ± 0.0 and 0.74 ± 0.0 MDa) were detected in the sample recovered from the cell-free supernatant by dialysis. The compositional analysis revealed the presence of glucose (31.1 ± 0.2 mol%), arabinose (23.9 ± 0.1 mol%), mannose (17.3 ± 0.1 mol%), glucosamine (10.3 ± 0.5 mol%), galactose (8.7 ± 0.0 mol%) and galacturonic acid (8.7 ± 0.0 mol%), as well as a high content in sulphate (6.0 ± 0.5 wt%). Given the presence of a high Mw polysaccharide in the apple pulp waste, probably pectin, a fraction of the detected sugar monomers might be attributed to that polymer, which was recovered together with A. macleodii Mo169 EPS. Concomitant with EPS synthesis, there was a viscosity build-up in the cultivation broth, which developed a shear-thinning fluid behaviour not observed in the initial medium. Therefore, this study demonstrates that apple pulp waste can be efficiently converted into a novel polysaccharide by A. macleodii Mo169 in a sustainable bioprocess. Moreover, the EPS sugar and acyl composition, together with its good thickening capacity, render the biopolymer of interest for use in several applications.publishersversionpublishe
    • …
    corecore