7 research outputs found

    Deletion of kinin B2 receptor alters muscle metabolism and exercise performance

    Get PDF
    Metabolic syndrome is a cluster of metabolic risk factors such as obesity, diabetes and cardiovascular diseases. Mitochondria is the main site of ATP production and its dysfunction leads to decreased oxidative phosphorylation, resulting in lipid accumulation and insulin resistance. Our group has demonstrated that kinins can modulate glucose and lipid metabolism as well as skeletal muscle mass. By using B2 receptor knockout mice (B2R-/-) we investigated whether kinin action affects weight gain and physical performance of the animals. Our results show that B2R-/- mice are resistant to high fat diet-induced obesity, have higher glucose tolerance as well as increased mitochondrial mass. These features are accompanied by higher energy expenditure and a lower feed efficiency associated with an increase in the proportion of type I fibers and intermediary fibers characterized by higher mitochondrial content and increased expression of genes related to oxidative metabolism. Additionally, the increased percentage of oxidative skeletal muscle fibers and mitochondrial apparatus in B2R-/- mice is coupled with a higher aerobic exercise performance. Taken together, our data give support to the involvement of kinins in skeletal muscle fiber type distribution and muscle metabolism, which ultimately protects against fat-induced obesity and improves aerobic exercise performance

    Leishmania Inhibitor of Serine Peptidase 2 Prevents TLR4 Activation by Neutrophil Elastase Promoting Parasite Survival in Murine Macrophages

    No full text
    Leishmania major is a protozoan parasite that causes skin ulcerations in cutaneous leishmaniasis. In the mammalian host, the parasite resides in professional phagocytes and has evolved to avoid killing by macrophages. We identified L. major genes encoding inhibitors of serine peptidases (ISPs), which are orthologs of bacterial ecotins, and found that ISP2 inhibits trypsin-fold S1A family peptidases. In this study, we show that L. major mutants deficient in ISP2 and ISP3 (Delta isp2/3) trigger higher phagocytosis by macrophages through a combined action of the complement type 3 receptor, TLR4, and unregulated activity of neutrophil elastase ( NE), leading to parasite killing. Whereas all three components are required to mediate enhanced parasite uptake, only TLR4 and NE are necessary to promote parasite killing postinfection. We found that the production of superoxide by macrophages in the absence of ISP2 is the main mechanism controlling the intracellular infection. Furthermore, we show that NE modulates macrophage infection in vivo, and that the lack of ISP leads to reduced parasite burdens at later stages of the infection. Our findings support the hypothesis that ISPs function to prevent the activation of TLR4 by NE during the Leishmania-macrophage interaction to promote parasite survival and growth

    High-pressure Tuning Of Valence And Magnetic Interactions In Eu 0.5yb 0.5ga 4

    No full text
    Pressure-induced changes in valence and magnetic ordering are observed in a Eu 0.5Yb 0.5Ga 4 compound by means of element selective x-ray absorption spectroscopy at Eu and Yb L 3 edges. Concomitant Eu and Yb valence transitions towards a 3+ state, together with an antiferromagnetic to ferromagnetic transition, are observed with applied pressures up to 30 GPa. With the support of density functional theory calculations, we argue that hybridization between (Eu/Yb)-5d and Ga orbitals regulates the valence and magnetic exchange interactions in this system. © 2012 American Physical Society.8524Bobev, S., Bauer, E.D., Thompson, J., Sarrao, J.L., (2004) J. Magn. Magn. Mater., 277, p. 236. , JMMMDC 0304-8853 10.1016/j.jmmm.2003.11.005Loula, G., Da Silva, L., Dos Santos, A., Medina, A., Gandra, F., (2008) Physica B: Condens. Matter, 403, p. 946. , PHYBE3 0921-4526 10.1016/j.physb.2007.10.285Vries, J.D., Thiel, R., Buschow, K., (1985) Physica B+C, 128, p. 265. , PHBCDQ 0378-4363 10.1016/0378-4363(85)90001-4Sun, L., Guo, J., Chen, G., Chen, X., Dong, X., Lu, W., Zhang, C., Zhang, S., (2010) Phys. Rev. B, 82, p. 134509. , PRBMDO 1098-0121 10.1103/PhysRevB.82.134509Cooley, J.C., Aronson, M.C., Sarrao, J.L., Fisk, Z., (1997) Phys. Rev. B, 56, p. 14541. , PRBMDO 1098-0121 10.1103/PhysRevB.56.14541Shannon, J.R., Sienko, M.J., (1972) Inorg. Chem., 11, p. 904. , INOCAJ 0020-1669 10.1021/ic50110a056Guy, C., Von Molnar, S., Etourneau, J., Fisk, Z., (1980) Solid State Commun., 33, p. 1055. , SSCOA4 0038-1098 10.1016/0038-1098(80)90316-6Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R., Materlik, G., (1987) Phys. Rev. Lett., 58, p. 737. , PRLTAO 0031-9007 10.1103/PhysRevLett.58.737Lang, J.C., Srajer, G., (1995) Rev. Sci. Instrum., 66, p. 1540. , RSINAK 0034-6748 10.1063/1.1145902Dadashev, A., Pasternak, M.P., Rozenberg, G.K., Taylor, R.D., (2001) Rev. Sci. Instrum., 72, p. 2633. , RSINAK 0034-6748 10.1063/1.1370561Syassen, K., (2008) High Press. Res., 28, p. 75. , HPRSEL 0895-7959 10.1080/08957950802235640Haskel, D., Tseng, Y.C., Lang, J.C., Sinogeikin, S., Instrument for x-ray magnetic circular dichroism measurements at high pressures (2007) Review of Scientific Instruments, 78 (8), p. 083904. , DOI 10.1063/1.2773800Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitzr, J., (2001) WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, , Technische Universität WienLang, J.C., Srajer, G., Detlefs, C., Goldman, A.I., König, H., Wang, X., Harmon, B.N., McCallum, R.W., (1995) Phys. Rev. Lett., 74, p. 4935. , PRLTAO 0031-9007 10.1103/PhysRevLett.74.4935Pettifer, R.F., Collins, S.P., Laundy, D., Quadrupole transitions revealed by Borrmann spectroscopy (2008) Nature, 454 (7201), pp. 196-199. , DOI 10.1038/nature07099, PII NATURE07099Souza-Neto, N.M., Haskel, D., Tseng, Y.-C., Lapertot, G., (2009) Phys. Rev. Lett., 102, p. 057206. , PRLTAO 0031-9007 10.1103/PhysRevLett.102.057206Lechner, R.T., Springholz, G., Schulli, T.U., Stangl, J., Schwarzl, T., Bauer, G., Strain induced changes in the magnetic phase diagram of metamagnetic heteroepitaxial EuSe/PbSe 1-xTe x multilayers (2005) Physical Review Letters, 94 (15), pp. 1-4. , http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype= pdf&id=PRLTAO000094000015157201000001&idtype=cvips, DOI 10.1103/PhysRevLett.94.157201, 157201Anderson, P.W., (1950) Phys. Rev., 79, p. 350. , PHRVAO 0031-899X 10.1103/PhysRev.79.350Kasuya, T., (1956) Prog. Theor. Phys., 16, p. 45. , PTPKAV 0033-068X 10.1143/PTP.16.45Yosida, K., (1957) Phys. Rev., 106, p. 893. , PHRVAO 0031-899X 10.1103/PhysRev.106.893Ruderman, M.A., Kittel, C., (1954) Phys. Rev., 96, p. 99. , PHRVAO 0031-899X 10.1103/PhysRev.96.99Haskel, D., Lee, Y.B., Harmon, B.N., Islam, Z., Lang, J.C., Srajer, G., Mudryk, Ya., Pecharsky, V.K., Role of Ge in bridging ferromagnetism in the giant magnetocaloric Gd5(Ge1-xSix)4 alloys (2007) Physical Review Letters, 98 (24), p. 247205. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevLett.98.247205&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevLett.98.24720

    Heat Flow Measurements And The Order Of The Magnetic Transition In (dy,gd)co 2 Solid Solutions

    No full text
    In this work we present scanning heat flow measurements in the series of compounds Dy 1-xGd xCo 2 (x = 0, 0.1, 0.2, 0.3) which reveal a first order character in the magnetic transition for x = 0 and 0.1. The isothermal entropy change obtained for a magnetic field variation from 0 to 2T shows good agreement with the calculations based on a model Hamiltonian that takes into account the crystal field, magnetoelastic, exchange and Zeeman interactions. The maximum entropy change varies from 7.0 J/kg K (DyCo 2) to 1.8 J/kg K (Dy 0.7Gd 0.3Co 2) under a 2T magnetic field variation. The refrigerant cooling power (RCP) varies from 97 J/kg to 67 J/kg across the series. The entropy shows a strong correlation with the transition temperature regardless the transition type. © 2011 Elsevier B.V. All rights reserved.513615619Goto, T., Fukamichi, K., Sakakibara, T., Komatsu, H., (1989) Solid State Commun., 72, p. 945Goto, T., Sakakibara, T., Murata, K., Komatsu, H., Fukamichi, K., (1990) J. Magn. Magn. Mater., 9091, p. 700Duc, N.H., Brommer, P.E., (1999) Handbook of Magnetic Materials, 12, pp. 259-394. , Elsevier AmsterdamHerrero-Albillos, J., Casanova, F., Bartolome, F., Garcia, L.M., Labarta, A., Batlle, X., (2005) J. Magn. Magn. Mater., 290-291, p. 682Herrero-Albillos, J., Bartolome, F., Garcia, L.M., Casanova, F., Labarta, A., Battle, X., (2006) Phys. Rev. B, 73, p. 134410Khmelevskyi, S., Mohn, P., (2000) J. Phys. Condens. Matter., 12, p. 9453Liu, X.B., Altounian, Z., (2006) J. Phys. Condens. Matter., 18, p. 5503Liu, X.B., Altounian, Z., (2006) J. Appl. Phys., 99, pp. 08F709Balli, M., Fruchart, D., Gignoux, D., (2007) J. Magn. Magn. Matter., 314, p. 16Balli, M., Fruchart, D., Gignoux, D., (2008) J. Alloys Compd., 455, p. 73Tishin, A.M., Spichkin, Y.I., (2003) The Magnetocaloric Effect and Its Applications, , first ed. Institute of Physics New YorkDe Oliveira, N.A., Von Ranke, P.J., (2010) Phys. Rep., 489, p. 89Wang, D., Liu, H., Tang, S., Yang, S., Huang, S., Du, Y., (2002) Phys. Lett. A, 297, p. 247Ouyang, Z.W., Rao, G.H., Yang, H.F., Liu, W.F., Liu, G.Y., Feng, X.M., Liang, J.K., (2003) Physica B, 334, p. 118Plackowski, T., Wang, Y., Junod, A., (2002) Rev. Sci. Instrum., 73, p. 2755Johnston, R.L., Hoffmann, R., (1992) Z. Chem., 616, p. 105Lea, K., Leask, M., Wolf, W., (1962) J. Phys. Chem. Solids, 23, p. 1382Stevens, K.W.H., (1952) Proc. Phys. Soc. Section A, 65, p. 209Wang, D.H., Tang, S.L., Liu, H.D., Gao, W.L., Du, Y.W., (2002) Intermetallics, 10, p. 819Gu, K., Li, J., Ao, W., Jian, Y., Tang, J., (2007) J. Alloys Compd., 441, p. 39Liu, X.B., Altounian, Z., (2005) J. Magn. Magn. Mater., 292, p. 83Alho, B.P., De Oliveira, N.A., De Sousa, V.S.R., Plaza, E.J.R., Magnus, A., Carvalho, G., Von Ranke, P.J., (2010) J. Phys.: Condens. Matter., 22, p. 486008Santana, R.P., De Oliveira, N.A., Von Ranke, P.J., (2011) J. Alloys Compd., 509, p. 6346Chen, X., Zhuang, Y.H., Yan, J.L., Fei, F., (2009) J. Alloys Compd., 479, p. 35Balli, M., Fruchart, D., Gignoux, D., (2011) J. Alloys Compd., 509, p. 3907Singh, N.K., Kumar, P., Suresh, K.G., Coelho, A.A., Gama, S., Nigam, A.K., (2007) J. Phys. D: Appl. Phys., 40, p. 162

    Anisotropic Magnetocaloric Effect In Erga2 And Hoga2 Single-crystals

    No full text
    In this work we study the anisotropic magnetocaloric properties of ErGa2 and HoGa2 single-crystals. Both compounds present antiferromagnetic ordering below 10 K but with different easy axis as a result of the crystal field anisotropy. The single-crystal conventional MCE values are similar or in certain circumstances even larger than the results for the polycrystalline material. The anisotropic MCE was calculated by taking the difference of the entropy change of the easy and hard magnetization directions. For both compounds, the anisotropic variation of entropy is as large as the conventional entropy change obtained by sweeping the magnetic field up to 5 T. Particularly for ErGa2 an inverse MCE for a 3 T field oriented along the easy axis is obtained with similar magnitude of the 5 T MCE found for polycrystalline samples. The results show that by exploring anisotropic properties of the materials it is possible to obtain a significant MCE. From a technological point of view this can be an interesting alternative because the MCE is produced just by rotating the magnetic material under a constant magnetic field. © 2013 Elsevier B.V. All rights reserved.582461465Tishin, M.A., (1999) Els. Sci. B, 12, pp. 395-520Yu, B.F., Gao, Q., Zhang, B., Meng, X.Z., Chenk, Z., (2003) Int. J. Refrig, 26, p. 622Gschneidner Jr., K.A., Pecharsky, V.K., Tsokol, A.O., (2005) Rep. Prog. Phys, 68, p. 1479Giguère, A., Foldeaki, M., Ravi Gopal, B., Chahine, R., Bose, T.K., Frydman, A., Barclay, J.A., (1999) Phys. Rev. Lett, 83, p. 2262Pecharsky, V., Gschneider Jr., K., (1997) Phys. Rev. Lett, 78, p. 4494Tegus, O., Bruck, E., Buschow, K.H.J., De Boer, F.R., (2002) Nature, 415, p. 150Wada, H., Taniguchi, K., Tanabe, Y., (2002) Mater. Trans, 43, p. 73De Campos, A., Rocco, D.L., Carvalho, A.M.G., Caron, L., Coelho, A.A., Gama, S., Da Silva, L.M., De Oliveira, N.A., (2006) Nat. Mater, 5, p. 802Kuzmin, M.D., Tishin, A.M., (1993) J. Appl. Phys, 73, p. 4083Lima, A.L., Gschneidner Jr., K.A., Pecharsky, V.K., (2004) J. Appl. Phys, 96, p. 2164Von Ranke, P.J., De Oliveira, N.A., Plaza, E.J.R., De Sousa, V.S.R., Alho, B.P., Magnus, A., Carvalho, G., Reis, M.S., (2008) J. Appl. Phys, 104, p. 093906Plaza, E.J.R., De Sousa, V.S.R., Alho, B.P., Von Ranke, P.J., (2010) J. Alloys Comp, 503, pp. 277-280Nikitin, S.A., Skokov, K.P., Koshkid'ko, Yu.S., Pastushenkov, Yu.G., Ivanova, T.I., (2010) Phys. Rev. Lett, 105, p. 137205Dos Reis, R.D., Da Silva, L.M., Dos Santos, A.O., Medina, A.M.N., Cardoso, L.P., Gandra, F.G., (2010) J. Phys.: Condens. Matter, 22, p. 486002Andreev, A.V., Baranov, N.V., Markin, P.E., Aruga Katori, H., Goto, T., Nakotte, H., Radwafiski, R.J., Kim-Ngan, N.H., (1995) J. Magn. Magn. Mat, 140-144, p. 1123Doukouré, M., Gignoux, D., (1982) J. Magn. Magn. Mater, 30, p. 111Von Ranke, P.J., De Oliveira, N.A., Alho, B.P., Plaza, E.J.R., De Sousa, V.S.R., Caron, L., Reis, M.S., (2009) J. Phys.: Condens. Matter, 21, p. 056004Von Ranke, P.J., Alho, B.P., Nobrega, E.P., Ade Oliveira, N., (2009) Physica B, 404, p. 3045Samanta, T., Das, I., Banerjee, S., (2007) Appl. Phys. Lett, 91, p. 152506Gomes, A.M., Garcua, F., Guimarães, A.P., Reis, M.S., Amaral, V.S., (2004) Appl. Phys. Lett, 85 (21), p. 4974Gignoux, D., Schmitt, D., Zhang, F.Y., (1996) J Alloys Comp, 234, p. 239Zou, M., Mudryk, Ya., Pecharsky, V.K., Gschneidner, K.A., Schlagel, D.L., Lograsso, T.A., (2007) Phys. Rev. B, 75 (2), p. 02441

    Abstracts from Hydrocephalus 2016

    No full text
    [No abstract available
    corecore