3,083 research outputs found

    Analysis of wind velocity and release angle effects on discus throw using computational fluid dynamics

    Get PDF
    The aim of this paper is to study the aerodynamics of discus throw. A comparison of numerical and experimental performance of discus throw with and without rotation was carried out using the analysis of lift and drag coefficients. Initial velocity corresponding to variation angle of around 35.5° was simulated. Boundary condition, on the top and bottom boundary edges of computational domain, was imposed in order to eliminate external influences on the discus; a wind resistance was calculated for the velocity values of 25 and 27 m/s. The results indicate that the flight distance (D) was strongly affected by the drag coefficient, the initial velocity, the release angle and the direction of wind velocity. It was observed that these variables change as a function of discus rotation. In this study, results indicate a good agreement of D between experimental values and numerical results.info:eu-repo/semantics/publishedVersio

    The depressogenic potential of added dietary sugars

    Get PDF
    Added sugars are ubiquitous in contemporary Western diets. Although excessive sugar consumption is now robustly associated with an array of adverse health consequences, comparatively little research has thus far addressed its impact on the risk of mental illness. But ample evidence suggests that high-dose sugar intake can perturb numerous metabolic, inflammatory, and neurobiological processes. Many such effects are of particular relevance to the onset and maintenance of depressive illness, among them: systemic inflammation, gut microbiota disruption, perturbed dopaminergic reward signaling, insulin resistance, oxidative stress, and the generation of toxic advanced glycation end-products (AGEs). Accordingly, we hypothesize that added dietary sugars carry the potential to increase vulnerability to major depressive disorder, particularly at high levels of consumption. The present paper: (a) summarizes the existing experimental and epidemiological research regarding sugar consumption and depression vulnerability; (b) examines the impact of sugar ingestion on known depressogenic physiological processes; and (c) outlines the clinical and theoretical implications of the apparent sugar-depression link. We conclude that the extant literature supports the hypothesized depressogenic impact of added dietary sugars, and propose that an improved understanding of the effects of sugar on body and mind may aid in the development of novel therapeutic and preventative measures for depression

    Analysis of drafting effects in swimming using computational fluid dynamics

    Get PDF
    The purpose of this study was to determine the effect of drafting distance on the drag coefficient in swimming. A k-epsilon turbulent model was implemented in the commercial code Fluent(®) and applied to the fluid flow around two swimmers in a drafting situation. Numerical simulations were conducted for various distances between swimmers (0.5-8.0 m) and swimming velocities (1.6-2.0 m.s(-1)). Drag coefficient (Cd) was computed for each one of the distances and velocities. We found that the drag coefficient of the leading swimmer decreased as the flow velocity increased. The relative drag coefficient of the back swimmer was lower (about 56% of the leading swimmer) for the smallest inter-swimmer distance (0.5 m). This value increased progressively until the distance between swimmers reached 6.0 m, where the relative drag coefficient of the back swimmer was about 84% of the leading swimmer. The results indicated that the Cd of the back swimmer was equal to that of the leading swimmer at distances ranging from 6.45 to 8. 90 m. We conclude that these distances allow the swimmers to be in the same hydrodynamic conditions during training and competitions. Key pointsThe drag coefficient of the leading swimmer decreased as the flow velocity increased.The relative drag coefficient of the back swimmer was least (about 56% of the leading swimmer) for the smallest inter-swimmer distance (0.5 m).The drag coefficient values of both swimmers in drafting were equal to distances ranging between 6.45 m and 8.90 m, considering the different flow velocities.The numerical simulation techniques could be a good approach to enable the analysis of the fluid forces around objects in water, as it happens in swimming.info:eu-repo/semantics/publishedVersio

    δ-Tocotrienol and quercetin reduce serum levels of nitric oxide and lipid parameters in female chickens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic, low-grade inflammation provides a link between normal ageing and the pathogenesis of age-related diseases. A series of <it>in vitro </it>tests confirmed the strong anti-inflammatory activities of known inhibitors of NF-κB activation (δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone). δ-Tocotrienol also suppresses β-hydroxy-β-methylglutaryl coenzyme A (HMG-CoA) reductase activity (the rate-limiting step in <it>de novo </it>cholesterol synthesis), and concomitantly lowers serum total and LDL cholesterol levels. We evaluated these compounds in an avian model anticipating that a dietary additive combining δ-tocotrienol with quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone would yield greater reductions in serum levels of total cholesterol, LDL-cholesterol and inflammatory markers (tumor necrosis factor-α [TNF-α], and nitric oxide [NO]), than that attained with the individual compounds.</p> <p>Results</p> <p>The present results showed that supplementation of control diets with all compounds tested except riboflavin, (-) Corey lactone, and dexamethasone produced small but significant reductions in body weight gains as compared to control. (-) Corey lactone and riboflavin did not significantly impact body weight gains. Dexamethasone significantly and markedly reduced weight gain (>75%) compared to control. The serum levels of TNF-α and NO were decreased 61% - 84% (<it>P </it>< 0.001), and 14% - 67%, respectively, in chickens fed diets supplemented with δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, or dexamethasone as compared to controls. Significant decreases in the levels of serum total and LDL-cholesterol were attained with δ-tocotrienol, quercetin, riboflavin and (-) Corey lactone (13% - 57%; <it>P </it>< 0.05), whereas, these levels were 2-fold higher in dexamethasone treated chickens as compared to controls. Parallel responses on hepatic lipid infiltration were confirmed by histological analyses. Treatments combining δ-tocotrienol with the other compounds yielded values that were lower than individual values attained with either δ-tocotrienol or the second compound. Exceptions were the significantly lower total and LDL cholesterol and triglyceride values attained with the δ-tocotrienol/(-) Corey lactone treatment and the significantly lower triglyceride value attained with the δ-tocotrienol/riboflavin treatment. δ-Tocotrienol attenuated the lipid-elevating impact of dexamethasone and potentiated the triglyceride lowering impact of riboflavin. Microarray analyses of liver samples identified 62 genes whose expressions were either up-regulated or down-regulated by all compounds suggesting common impact on serum TNF-α and NO levels. The microarray analyses further identified 41 genes whose expression was differentially impacted by the compounds shown to lower serum lipid levels and dexamethasone, associated with markedly elevated serum lipids.</p> <p>Conclusions</p> <p>This is the first report describing the anti-inflammatory effects of δ-tocotrienol, quercetin, riboflavin, (-) Corey lactone, amiloride, and dexamethasone on serum TNF-δ and NO levels. Serum TNF-δ levels were decreased by >60% by each of the experimental compounds. Additionally, all the treatments except with dexamethasone, resulted in lower serum total cholesterol, LDL-cholesterol and triglyceride levels. The impact of above mentioned compounds on the factors evaluated herein was increased when combined with δ-tocotrienol.</p

    Towards a New Science of a Clinical Data Intelligence

    Full text link
    In this paper we define Clinical Data Intelligence as the analysis of data generated in the clinical routine with the goal of improving patient care. We define a science of a Clinical Data Intelligence as a data analysis that permits the derivation of scientific, i.e., generalizable and reliable results. We argue that a science of a Clinical Data Intelligence is sensible in the context of a Big Data analysis, i.e., with data from many patients and with complete patient information. We discuss that Clinical Data Intelligence requires the joint efforts of knowledge engineering, information extraction (from textual and other unstructured data), and statistics and statistical machine learning. We describe some of our main results as conjectures and relate them to a recently funded research project involving two major German university hospitals.Comment: NIPS 2013 Workshop: Machine Learning for Clinical Data Analysis and Healthcare, 201

    Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice

    Get PDF
    Reverse cholesterol transport (RCT) refers to the mobilization of cholesterol on HDL particles (HDL-C) from extravascular tissues to plasma, ultimately for fecal excretion. Little is known about how HDL-C leaves peripheral tissues to reach plasma. We first used 2 models of disrupted lymphatic drainage from skin — 1 surgical and the other genetic — to quantitatively track RCT following injection of [3H]-cholesterol–loaded macrophages upstream of blocked or absent lymphatic vessels. Macrophage RCT was markedly impaired in both models, even at sites with a leaky vasculature. Inhibited RCT was downstream of cholesterol efflux from macrophages, since macrophage efflux of a fluorescent cholesterol analog (BODIPY-cholesterol) was not altered by impaired lymphatic drainage. We next addressed whether RCT was mediated by lymphatic vessels from the aortic wall by loading the aortae of donor atherosclerotic Apoe-deficient mice with [2H]6-labeled cholesterol and surgically transplanting these aortae into recipient Apoe-deficient mice that were treated with anti-VEGFR3 antibody to block lymphatic regrowth or with control antibody to allow such regrowth. [2H]-Cholesterol was retained in aortae of anti–VEGFR3-treated mice. Thus, the lymphatic vessel route is critical for RCT from multiple tissues, including the aortic wall. These results suggest that supporting lymphatic transport function may facilitate cholesterol clearance in therapies aimed at reversing atherosclerosis

    Hydrodynamic Drag during Gliding in Swimming

    Get PDF
    This study used a computational fluid dynamics methodology to analyze the effect of body position on the drag coefficient during submerged gliding in swimming. The k-epsilon turbulent model implemented in the commercial code Fluent and applied to the flow around a three-dimensional model of a male adult swimmer was used. Two common gliding positions were investigated: a ventral position with the arms extended at the front, and a ventral position with the arms placed along side the trunk. The simulations were applied to flow velocities of between 1.6 and 2.0 m x s(-1), which are typical of elite swimmers when gliding underwater at the start and in the turns. The gliding position with the arms extended at the front produced lower drag coefficients than with the arms placed along the trunk. We therefore recommend that swimmers adopt the arms in front position rather than the arms beside the trunk position during the underwater gliding.info:eu-repo/semantics/publishedVersio
    corecore