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A B S T R A C T

Added sugars are ubiquitous in contemporary Western diets. Although excessive sugar consumption is now
robustly associated with an array of adverse health consequences, comparatively little research has thus far
addressed its impact on the risk of mental illness. But ample evidence suggests that high-dose sugar intake can
perturb numerous metabolic, inflammatory, and neurobiological processes. Many such effects are of particular
relevance to the onset and maintenance of depressive illness, among them: systemic inflammation, gut micro-
biota disruption, perturbed dopaminergic reward signaling, insulin resistance, oxidative stress, and the gen-
eration of toxic advanced glycation end-products (AGEs). Accordingly, we hypothesize that added dietary sugars
carry the potential to increase vulnerability to major depressive disorder, particularly at high levels of con-
sumption. The present paper: (a) summarizes the existing experimental and epidemiological research regarding
sugar consumption and depression vulnerability; (b) examines the impact of sugar ingestion on known de-
pressogenic physiological processes; and (c) outlines the clinical and theoretical implications of the apparent
sugar-depression link. We conclude that the extant literature supports the hypothesized depressogenic impact of
added dietary sugars, and propose that an improved understanding of the effects of sugar on body and mind may
aid in the development of novel therapeutic and preventative measures for depression.

Introduction

Over the past century, sugar has become a dietary staple throughout
the developed world. Americans currently derive an estimated 14% of
all calories from added sugarsa [1]—typically introduced to foods and
beverages during their preparation and processing—the equivalent of
18 teaspoons’ worth each day. These sweeteners are even found in an
estimated 75% of all packaged foods [2]. The consumption of a high-
sugar diet has, of course, been implicated as a risk factor for an array of
adverse health outcomes, including obesity [3], cardiovascular disease
[4], type 2 diabetes mellitus [5], and dental caries [6]. As a result, U.S.
dietary guidelines now advise limiting the consumption of added su-
gars, both to promote better overall health and to help reduce the
burgeoning toll of obesity [7].

Although maladaptive dietary habits pose an obvious threat to
physical well-being, they also carry the potential to endanger psycho-
logical health [8]. In fact, major depressive disorder, one of the most

highly prevalent and disabling forms of mental illness worldwide [9],
appears particularly susceptible to unhealthy nutritional influences
[10,11]. Dietary interventions, such as those designed to improve nu-
trition or reduce weight, have been found to reduce depressive symp-
toms [12]. Similarly, diets high in the consumption of fruits, vegetables,
fish, and whole grains are associated with a lower risk of depression
onset [13,14], whereas the frequent intake of red meats, refined grains,
sweets, and other “unhealthy” foods is linked with increased depression
vulnerability [13,15]. Short-term carbohydrate consumption even car-
ries the potential to induce fatigue and decreased alertness [16].
Moreover, healthy and unhealthy diets, respectively, each appear to
exert independent effects on mental health [11,17], which suggests that
depressogenic processes can be affected both by the relative absence of
key nutrients and by the excessive presence of harmful foods. Identi-
fying the latter—the specific dietary components that contribute to
depression vulnerability—will enhance our understanding of the pa-
thology and treatment of this devastating illness.
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Therefore, given the established link between excessive sugar intake
and adverse health outcomes, as well as the broader association be-
tween dietary quality and mental health, we hypothesize that added
dietary sugars constitute a risk factor for the onset of depression, par-
ticularly at high levels of consumption. In the following sections we
examine two primary lines of evidence that lend support to the hy-
pothesis: (a) direct investigations of the sugar-depression relationship,
including observational studies and animal experiments; and (b) a vo-
luminous literature on the depressogenic physiological effects of added
sugar ingestion.

Sugar consumption and depression risk

Longitudinal cohort studies

Several large epidemiological studies have explored the sugar-de-
pression link by tracking participants’ dietary habits and health out-
comes prospectively over a span of several years. The Women’s Health
Initiative Observational Study, for example, followed 69,954 American
women over a 3-year period [18]. Investigators observed that women in
the top quintile of added sugar consumption (median 79.2 g daily) were
at 23% greater risk of subsequent clinical depression than those in the
bottom quintile (17.8 g daily), even after accounting for other relevant
dietary factors, disease markers, and demographic variables. Another
large trial, the NIH-AARP Diet and Health Study, found that the regular
consumption of sugar-sweetened beverages (the leading dietary source
of added sugars) conferred a 20% increase in depression incidence over
a 4-to-5-year follow-up period [19]. A subsequent study of 15,546
Spanish university graduates likewise observed a heightened risk of
depression among the heaviest consumers of sugar over a 10-year
follow-up [20], and another recent cohort study also reported a positive
association between sugar intake and the onset of future depressive
symptoms [21]. Conversely, two recent cohort studies failed to find the
hypothesized association [22,23]: Gopinath et al. [22] did not find a
statistically significant association between total sugar intake and de-
pressive symptoms, while Vermeulen et al. [23] similarly found no
relationship between symptoms and a high-sugar dietary pattern. It
should be noted, however, that unlike the aforementioned supporting
studies [18,19,20], the two contrary studies [22,24] did not specifically
examine the impact of added sugars, per se. Instead, they utilized
dietary indices that conflated sugars with other simple carbohy-
drates—a less precise methodology that may have limited investigators’
ability to detect a potential link between added sugars and depression.

Cross-sectional surveys

Cross-sectional surveys provide additional support for the hy-
pothesized sugar-depression relationship. For example, the incidence of
depression for Australian adults was roughly 50% higher among regular
versus non-regular soda drinkers [25]. Similarly, Chinese adults who
reported drinking over seven ounces of soda daily were significantly
more likely to report clinically salient depressive symptoms than those
who consumed fewer [26]. Investigators have also found sugar-swee-
tened beverage intake to be positively associated with depressive
symptoms among low-income obese Latino immigrants [27], and
among Iranian children and adolescents [28]. Indeed, a recent meta-
analysis of cohort and cross-sectional studies found that the consump-
tion of sugar-sweetened beverages was linked to a significantly in-
creased risk of depression [29].

Animal models

Several published studies suggest that high-sugar diets may elicit
depressive behaviors in rats. In comparison with rats fed standard (low-
sugar) “rat chow,” those provided with free access to high-sucrose food
for two days a week over the course of seven weeks displayed

depressive and anhedonic behavioral shifts [30]. Rats given sugar-
sweetened water for nine weeks likewise displayed depressive-like be-
havior in a forced-swim test paradigm [31]. Related work suggests that
overfeeding sugar to adolescent rats induces subsequent depressive and
anhedonic behavior during adulthood [32,33]. On the other hand,
Pyndt Jørgensen et al. [34] have failed to find a relationship between
sugar consumption and depressive behavior in mice, which suggests
that the depressogenic potential of sugar may differ to some degree
across species.

Depressogenic physiological effects of added sugar ingestion

Although the above-reviewed studies generally support the hy-
pothesized association between excess sugar consumption and the risk
of depressive illness, most of the relevant evidence is merely correla-
tional in nature. It remains unclear the degree to which added sugars
contribute causally to the experience of depression. In fact, we are
aware of no well-conducted experimental manipulations of sugar intake
to evaluate the sweetener’s direct causal impact on human depressive
symptomatology.

Nevertheless, one additional line of evidence is worthy of con-
sideration in this context—an extensive, robust research literature on
the adverse physiological consequences of excess sugar consumption.
Several such pathophysiological effects also exhibit a well-documented
potential to induce depression (see Fig. 1), among them: systemic in-
flammation, gut microbiota disruption, perturbed dopaminergic reward
signaling, insulin resistance, oxidative stress, and the generation of
toxic advanced glycation end-products (AGEs). The impact of sugar in-
gestion on these depressogenic processes is reviewed in the sections
that follow.

Inflammation

Elevated systemic inflammation is recognized as a potent physio-
logical trigger of depression [35]. Meta-analyses have found the con-
centrations of several inflammatory factors, for example, to be higher
among depressed individuals than among non-depressed controls
[36,37]. Inflammation is also associated with several characteristic
depressive symptoms, including fatigue, sleep disruption, and appetite
changes [38]. Finally, pro-inflammatory drugs carry the potential to
induce depressive symptoms and to increase the risk of full-blown de-
pression onset [39], while anti-inflammatory drugs possess anti-
depressant therapeutic properties [40].

Dietary sugars can elicit inflammation in both humans and non-
human animals. Pro-inflammatory states, marked by elevated levels of
inflammatory factors and increased expression of inflammatory genes,

Fig. 1. Schematic overview of the physiological pathways linking sugar to de-
pression.
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characterize rats fed a high-fructose diet [41,42]. A similar pro-in-
flammatory response can be seen in humans following the consumption
of sugar-sweetened beverages. Jameel, Phang, Wood, and Garg [43]
found that participants’ consumption of 50 g of dissolved fructose im-
mediately increased levels of an important inflammatory factor, high-
sensitivity c-reactive protein (hs-CRP). In fact, hs-CRP levels have been
shown to double after just three weeks of daily exposure to sugar-
sweetened beverages [44]. Additionally, a cross-sectional analysis of
17,689 U.S. adults found that measured hs-CRP levels significantly
covaried with self-reported sugar consumption [45]. Another cross-
sectional study likewise found that higher intake of added sugars was
associated with higher levels of inflammation [46]. Added sugars may
also trigger specific inflammatory processes localized within the brain
(neuroinflammation), which are in turn linked with impaired cognitive
function [47]. Rats exposed to high-sugar diets display impaired
memory, along with increased inflammation and the expression of in-
flammatory genes within the hippocampus, a major brain nexus of
memory consolidation and retrieval [48,49]. Significantly, cognitive
deficits are a primary feature of depression, often contributing to the
syndrome’s characteristic psychosocial impairment [50].

In sum: added sugars have a profound effect on inflammatory pro-
cesses within the body and brain, and inflammation may serve as a key
mediator of sugar-induced depression onset. As discussed in the sec-
tions that follow, four additional depressive physiological pathways
affected by sugar intake—disruption of the gut-brain axis, oxidative
stress, insulin resistance, and the production of toxic advanced glyca-
tion end products (AGEs)—are also associated with increased in-
flammation.

Microbiota dysfunction

Extensive interconnections have been discovered between the
human central nervous system and the collection of microbes residing
within the body—the microbiota—and researchers have recently begun
to explore the microbiota’s potential role in depression and other psy-
chological disorders [51]. The human microbiota is altered by the
quantity of microbe-accessible carbohydrates in the diet, including su-
gars like glucose and fructose [52], and high-sugar diets are thought to
permit the proliferation of harmful opportunistic organisms that con-
tribute to dysbiosis, a state of maladaptive microbiota imbalance [53].
Dysbiosis, in turn, is linked to numerous physical and psychological
pathologies [54].

Although knowledge of the human microbiota remains nascent,
animal models suggest that high-sugar diets can disrupt microbiota
balance and functioning. Rats fed a high-fructose diet display an altered
microbiota, and this disruption is further related to increased disease
risk [55]. Magnusson et al. [56] found that mice briefly fed a high-sugar
diet also displayed distinct changes within the microbiota, in compar-
ison with mice fed standard or high-fat diets; the sugar-fed mice also
evidenced a broad pattern of cognitive impairment. Analyses of gut
bacteria in mice have likewise revealed that a long-term, high-fructose
diet can substantially alter microbiota composition and induce dys-
biosis [57,58]. Additionally, Jena et al. [59] found that a 30-day high-
fructose diet suppressed beneficial microbe species in rats. Excessive
fructose consumption is also linked to intestinal bacterial overgrowth, a
process in which abnormally large numbers of bacteria grow in the
small intestine [60].

Sugar-induced dysbiosis may contribute to depression primarily by
promoting inflammatory processes throughout the body. In fact, mi-
crobiota-induced inflammation has been posited as a primary risk factor
for the development of depression [61]. There is growing evidence, for
example, that sugar can increase intestinal permeability, resulting in
increased passage of bacteria through the intestinal barrier and the
subsequent activation of pro-inflammatory signaling pathways [62].
Higher consumption of fructose has also been linked to an increased
presence of endotoxins (bacterially-produced poisons) in the blood of

humans, indicative of increased intestinal permeability [63]. Bergheim
et al. [64] provided mice with sugar-sweetened water for eight weeks,
and they found that fructose-fed mice, in comparison with controls, had
significantly higher levels of blood endotoxins, as well as sharply in-
creased inflammation. Spruss et al. [60] and Sellmann et al. [65] both
found a similar connection in rodents between fructose consumption
and increased intestinal permeability. Added sugars may increase in-
testinal permeability by inhibiting microbes that maintain the intestinal
barrier. Microbes of the genus lactobacillus have been found to decrease
intestinal permeability [66,67], and this same genus seems to be sup-
pressed by exposure to high-fructose diets [59]. There is also evidence
that sugar directly affects the structure of the intestinal barrier, as high-
fructose diets can interfere with the proteins necessary to maintain
healthy intestinal barrier functioning [58,65].

Importantly, excessive intestinal permeability has been implicated
in the pathophysiology of depression. Depressed individuals have been
found to have an increased passage of bacteria through the intestinal
barrier [68] and an enhanced immune and oxidative stress response
against such intestinal bacteria [69,70]. Likewise, bacteria of the genus
Alistipes, microbes associated with intestinal inflammation [71], have
been found to be overrepresented in depressed individuals [72,73].
Clinical improvement of depression among patients in treatment—even
among those receiving psychotherapy—is also associated with a de-
crease of both intestinal permeability and inflammation [68].

Dopaminergic dysregulation

The neurotransmitter dopamine (DA) plays a central role in brain
circuitry that regulates reward-based behavior and key motivational
processes. Signaling abnormalities that arise from chronic, stress-in-
duced activation of dopamine-based (dopaminergic) pathways seem to
contribute to depressive and anhedonic states through a down-regula-
tion of dopaminergic activity [74]. Indeed, depressed humans evince
significantly lower baseline dopaminergic brain activity than healthy
controls [75]. Targeted interference of DA activity in mice has also been
shown to induce depressive-like behavior under stressful conditions
[76], and Chang and Grace [77] have demonstrated that rats exposed to
chronic, unpredictable stressors manifest both depressive-like behavior
and reduced DA activity.

Interestingly, acute sugar consumption tends to stimulate the DA
system: even a sip of sugary beverage immediately activates rewards
areas within the human brain [78,79]. In rats, Bassareo et al. [80]
witnessed a significant burst of DA release in the brain’s nucleus ac-
cumbens, a region centrally involved in reward and reinforcement, just
ten minutes after the animals were fed sugar for the first time. Hajnal,
Smith, and Norgren [81] found that DA release in the nucleus ac-
cumbens increased as a function of the concentration of ingested sugar,
suggesting that added sugars have a dose-dependent impact on DA
activity. Furthermore, DA antagonists have been demonstrated to block
the reinforcing properties of sugar ingestion [82,83].

In addition to acutely stimulating cerebral DA activity, excessive
sugar intake is associated with maladaptive changes in the structure
and function of DA pathways—pathology consistent with the observed
connection between DA dysregulation and depression [74]. DA in the
striatum, a component of the brain’s reward system, is particularly af-
fected by excessive added sugar consumption. Rats chronically fed a
high-sugar diet have been found to exhibit decreased concentrations of
striatal DA [84] and reduced expression of the D2 dopamine receptor,
which helps regulate reward-based DA activity [85]. Rodents that lose
access to sugar after long-term overfeeding similarly display decreased
DA levels [86,87]. Additionally, long-term high-sugar diets are asso-
ciated with decreased striatal D2 receptor binding, further indicative of
a sugar-induced reduction of D2 receptor density [88,89].

In sum: a substantial body of evidence suggests that chronic added
sugar ingestion can interfere with intrinsic reward systems in a manner
capable of inducing anhedonia and motivational deficits. Both are
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hallmark symptoms and maintenance factors of depression.

Oxidative stress

Oxidative stress refers to a physiological state characterized by excess
metabolic molecular by-products known as reactive oxygen species,
which in turn induce toxic effects such as cellular destruction, in-
flammation, and accelerated aging [90]. Two recent meta-analyses
suggest that depression is characterized by elevated levels of oxidative
stress [91,92], which has been observed to normalize either with an-
tidepressant drug treatment [92] or interventions such as vitamin D
supplementation or even cognitive psychotherapy [93,94]. Notably,
direct administration of a compound with antioxidant properties has
also been shown to have antidepressant effects [95].

Accumulating research suggests that added sugar consumption can
induce oxidative stress. Cosentino et al. [96] found that human cells
exposed to high levels of glucose—a state commonly observed fol-
lowing acute sugar ingestion—produced elevated levels of reactive
oxygen species. In fact, a heightened oxidative stress response has been
observed in vivo among healthy adults immediately following high-
dose glucose consumption [97]. Short-term supplementation with
fructose-sweetened beverages has also increased oxidative stress in
otherwise healthy overweight/obese individuals [98]. Likewise, mar-
kers of oxidative stress rapidly rose in preterm neonates after the ad-
ministration of sucrose for pain management [99].

Added sugars are also associated with oxidative stress in rodents.
Markers of oxidative stress are increased in rats chronically fed a high-
fructose diet [41,100], while levels of antioxidants (and antioxidative
enzymes) are decreased under the same dietary conditions [41,42].
Elevated production of reactive oxygen species has also been found in
mice fed excessive sugar [101]. Damage related to fructose-induced
oxidative stress has been viewed in the liver of rats [100]. Additionally,
Lopes et al. [102] demonstrated that a single injection of fructose can
exacerbate oxidative stress within the brains of rats.

In sum: oxidative stress contributes to the dysregulation of various
physiological pathways associated with depressive processes. Together
with inflammation, it may mediate the depressogenic impact of ex-
cessive added sugar consumption.

Insulin resistance

Insulin is a key hormone that permits glucose to enter cells for
conversion to energy. Insulin resistance develops when receptors become
less sensitive to the hormone, thereby limiting its effectiveness and in
turn depriving cells of adequate fuel. Insulin receptors are present
throughout the brain, and they play a central role in regulating its use
of glucose for energy [103]. There is even emerging evidence (reviewed
in [104]) that depression can directly arise from the brain’s insulin
resistance and its ensuing disruption of energy utilization. For example,
adults with insulin resistance are at heightened risk for the develop-
ment of future depression [105], while cross-sectional epidemiological
work suggests a low- to moderate-strength association between insulin
resistance and depression incidence [106].

Excessive sugar consumption is strongly implicated as a potential
driver of insulin resistance. In fact, high-sugar diets are frequently used
to induce insulin resistance in rodent models. Pagliassotti, Prach,
Koppenhafer, and Pan [107] demonstrated that a high-sugar diet fed to
rats can elicit insulin resistance in the liver and muscles within one and
eight weeks, respectively. Fructose consumption has also been shown to
down-regulate the expression of insulin receptors and other insulin-
related proteins in rats [108]. Humans are similarly susceptible to
sugar-induced insulin dysregulation. Couchepin et al. [109], for ex-
ample, found that a short-term, high-fructose diet increased fasting
glucose levels in healthy men and women, indicative of impaired in-
sulin functioning. Stanhope et al. [110] likewise demonstrated that
consumption of fructose-sweetened beverages decreased insulin

sensitivity over the course of ten weeks. In fact, even one week of
fructose overfeeding is sufficient to decrease insulin sensitivity
[111,112].

Significantly, insulin resistance interacts with other depressogenic
processes. Inflammation and oxidative stress are both involved in the
pathogenesis of insulin resistance [113,114]. In turn, insulin has anti-
inflammatory and antioxidant properties which may become disrupted
following insulin resistance [115,116]. Insulin resistance is also asso-
ciated with perturbed dopamine signaling in rodents [116,117]. The
bidirectional relationships between insulin dysregulation and key de-
pressive processes highlight the detrimental systemic impact of added
sugar consumption.

Advanced glycation end-products (AGEs)

Advanced glycation end-products (AGEs) are toxic molecules that
form when sugar molecules react with proteins, lipids (fats), or other
compounds in the body. Accumulating evidence suggests that excessive
added sugar consumption promotes AGE formation by increasing the
availability of glucose and fructose, thereby allowing these sugars to be
irreversibly converted to AGEs within the body [118]. Animal models
have demonstrated that high-fructose and high-glucose diets increase
the concentration of AGEs in both blood and tissue [119,120]. Once
formed, AGEs are associated with a cascade of adverse biological re-
actions, including oxidative stress, inflammation, and neurocognitive
dysfunction [121,122,123].

In light of these broadly deleterious effects, AGEs have recently
been proposed as novel markers of lifestyle-related diseases [124]—a
category that includes depression [125]. In fact, a recent landmark
investigation by van Dooren et al. [126] lends support to the hy-
pothesized role of AGEs in depressive illness. Among a well-character-
ized sample of 862 Dutch adults (Maastricht Study), those with elevated
AGE accumulations in skin tissue evidenced a 42% increase in the risk
of depressive disorder [126]. Study investigators also observed a sig-
nificant positive association between measured AGE levels and the se-
verity of depressive symptoms.

Although the Maastricht Study is the only large-scale investigation
to date of the depressive impact of AGEs, several additional lines of
evidence lend support to the finding. First, depressed individuals have
been observed to have low levels of circulating protective molecules
that bind and neutralize AGEs before they are able to cause damage
[127,128]. Depressed individuals also appear to be deficient in the
expression of glyoxalase-1, an antioxidant enzyme that helps degrade
AGEs and minimize their toxic impact [129]. Further, Franklin et al.
[130] demonstrated that mice without functioning AGE receptors are
resistant to stress-induced depressive-like behavior. Finally, rodents
exposed to high AGE levels have been found to experience impaired
neuronal growth (neurogenesis) in the hippocampus—a central neuro-
logical feature of depression—and this reduced neurogenesis was re-
versed by administration of an anti-AGE drug [131]. Taken together,
these findings provide substantial support for the hypothesis that AGEs
exert depressogenic effects.

Conclusions and future directions

Multiple distinct lines of evidence generally converge in suggesting
that the consumption of added sugars may induce depressogenic effects.
The strongest evidence, by far, comes from the extensive literature on
the pathophysiological consequences of added sugar ingestion, which
collectively serve as candidate mediational mechanisms through which
added sugars may adversely influence well-being. As reviewed, sugar
intake promotes numerous maladaptive processes capable of inducing
depressive symptomatology (depicted in Fig. 1): microbiota dysfunction
(an altered gut-brain axis), disordered dopamine signaling, oxidative
stress, insulin resistance, and the generation of advanced glycation end-
products (AGEs). Most of these processes also promote pathological
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inflammation—itself a particularly robust, well-established risk factor
for depression [35]. Although the existing evidence regarding the hy-
pothesized sugar-depression link is still neither definitive nor con-
clusive due to the absence of rigorous experimental manipulations of
added sugar intake among sufficiently large and randomly assigned
participant samples, we nonetheless regard the extant body of relevant
research as persuasive.

Much more extensive investigation will be necessary, of course, to
fully elucidate the sweetener’s hypothesized depressogenic potential in
humans. Ideally, such work would not only feature the experimental
control of sugar intake at varying levels, but also the inclusion of re-
levant biomarkers of sugar-induced depressogenic processes. In a si-
milar vein, it may prove valuable to evaluate the psychological impact of
dietary interventions specifically designed to help reduce the con-
sumption of added sugars—and thereby to reduce the occurrence of
inflammation, oxidative stress, gut dysbiosis, and so on. Such inter-
ventions may carry the potential to reduce depressive symptoms (or to
prevent their future occurrence), at least among the subset of patients
with high baseline sugar consumption.

It is also necessary to clarify the amount (“dosage”) of sugar re-
quired to induce psychopathological consequences. Gangwisch et al.
[18] observed the lowest risk of depression onset among those in the
lowest quintile (20%) of added sugar intake, who had a median con-
sumption of 17.8 g daily. Notably, this amount is not far below the
suggested daily limitb recommended by the American Heart Association
[132], and we believe it serves as a reasonable placeholder guideline
while additional research is conducted—particularly for those battling
depression or at high risk of future onset of depressive illness. There
likely also exists considerable individual variation—derived from ge-
netic, epigenetic, and gut microbial differences—in the physiological
response to added sugars. That is, some people are probably far more
sensitive than others to the sweetener’s depressogenic effects. The dis-
covery of any such reliable individual differences would likely be of
both clinical and theoretical importance to the field.

Finally, to the degree that the connection between added sugars and
depressive illness is robustly established by further research, it may
desirable to develop low-sugar dietary interventions that can be effec-
tively implemented at a population level. Unlike existing low-carb
clinical diets, which typically require the extremely limited consump-
tion of any carbohydrates [133,134], depression-focused diets could
aim specifically to reduce the intake of added sugars while simulta-
neously ignoring other types of carbohydrates, thereby eliminating the
need for restrictive (or expensive) dietary changes that act as a barrier
to adherence [135,136]. One simple change that could have a sub-
stantial impact on added sugar intake is the reduction or elimination of
sugar-sweetened beverages. Such beverages are the single leading
source of added sugars [137] and they have limited nutritional value,
making them a prime candidate for reduction or elimination. Educa-
tional and behavioral interventions (e.g., substituting water for sodas)
have been shown to successfully reduce intake of sugar-sweetened
beverages in both children and adults, as have public policy strategies
such as targeted sugary beverage taxation [138,139,140]. However, the
long-term effectiveness and sustainability of such strategies remain
largely unknown [138], as do their potential protective benefit vis-à-vis
depressive illness. Other high-sugar, low-nutrition foods, such as candy,
should also be considered prime candidates for reduction. Regardless of
the intervention strategy, excessive restriction (e.g., the banning of all
sugar products) would likely prove counter-productive, inasmuch as
restrictive dietary patterns are associated with disordered eating [141].
Moreover, there is some early evidence that reducing sugar intake can
actually increase its reinforcement value—an important caveat for in-
vestigators to bear in mind during the development of novel dietary
interventions [142].
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