1,345 research outputs found
Probing a Kondo correlated quantum dot with spin spectroscopy
We investigate Kondo effect and spin blockade observed on a many-electron
quantum dot and study the magnetic field dependence. At lower fields a
pronounced Kondo effect is found which is replaced by spin blockade at higher
fields. In an intermediate regime both effects are visible. We make use of this
combined effect to gain information about the internal spin configuration of
our quantum dot. We find that the data cannot be explained assuming regular
filling of electronic orbitals. Instead spin polarized filling seems to be
probable.Comment: 4 pages, 5 figure
Dephasing in (Ga,Mn)As nanowires and rings
To understand quantum mechanical transport in ferromagnetic semiconductor the
knowledge of basic material properties like phase coherence length and
corresponding dephasing mechanism are indispensable ingredients. The lack of
observable quantum phenomena prevented experimental access to these quantities
so far. Here we report about the observations of universal conductance
fluctuations in ferromagnetic (Ga,Mn)As. The analysis of the length and
temperature dependence of the fluctuations reveals a T^{-1} dependence of the
dephasing time.Comment: 5 pages, 4 figure
Calculation and spectroscopy of the Landau band structure at a thin and atomically precise tunneling barrier
Two laterally adjacent quantum Hall systems separated by an extended barrier
of a thickness on the order of the magnetic length possess a complex Landau
band structure in the vicinity of the line junction. The energy dispersion is
obtained from an exact quantum-mechanical calculation of the single electron
eigenstates for the coupled system by representing the wave functions as a
superposition of parabolic cylinder functions. For orbit centers approaching
the barrier, the separation of two subsequent Landau levels is reduced from the
cyclotron energy to gaps which are much smaller. The position of the
anticrossings increases on the scale of the cyclotron energy as the magnetic
field is raised. In order to experimentally investigate a particular gap at
different field strengths but under constant filling factor, a GaAs/AlGaAs
heterostructure with a 52 Angstrom thick tunneling barrier and a gate electrode
for inducing the two-dimensional electron systems was fabricated by the cleaved
edge overgrowth method. The shift of the gaps is observed as a displacement of
the conductance peaks on the scale of the filling factor. Besides this effect,
which is explained within the picture of Landau level mixing for an ideal
barrier, we report on signatures of quantum interferences at imperfections of
the barrier which act as tunneling centers. The main features of the recent
experiment of Yang, Kang et al. are reproduced and discussed for different gate
voltages. Quasiperiodic oscillations, similar to the Aharonov Bohm effect at
the quenched peak, are revealed for low magnetic fields before the onset of the
regular conductance peaks.Comment: 8 pages, 10 figures, 1 tabl
Phase coherence in the inelastic cotunneling regime
Two quantum dots with tunable mutual tunnel coupling have been embedded in a
two-terminal Aharonov-Bohm geometry. Aharonov-Bohm oscillations are
investigated in the cotunneling regime. Visibilities of more than 0.8 are
measured indicating that phase-coherent processes are involved in the elastic
and inelastic cotunneling. An oscillation-phase change of pi is detected as a
function of bias voltage at the inelastic cotunneling onset.Comment: 4 pages, 4 figure
Pluripotent stem cells and their dynamic niche
Cell-seeded implants are a regenerative medicine strategy that aims to replace injured tissue and restore tissue function. Pluripotent stem cells are promising cell candidates for the development of regenerative medicine therapies as they have the ability to self-renew and commit towards numerous cell types. In vivo, stem cells reside in a dynamic niche, a stem cell-specific microenvironment that possesses chemical, biological and mechanical cues, which drive the stem cell fate and renewal. The connection between
stem cells and their niche is a two-way relationship consisting of both cell–cell interac‐tion and cell–extracellular matrix (ECM) interactions. An alternative regenerative medicine approach is the manipulation of the stem cell microenvironment. Hence, novel strategies have been developed including 3D biomaterials and bioreactor technologies providing topographical, chemical and mechanical cues to recreate the stem cell niche. Understanding the mechanisms controlling stem cell fate and the dynamic nature of thestem cell niche will enable researchers to replicate this stem cell-specific microenvironment, and therefore, harness and control the valuable attributes which stem cells possess. This chapter elucidates the importance of pluripotent stem cells and their dynamic niche in regenerative medicine. It further presents novel strategies to replicate chemical, topographical and mechanical stimuli which are essential for the regulation of stem cell fate and hence tissue regeneration
- …
