181 research outputs found

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation

    Technologies and combination therapies for enhancing movement training for people with a disability

    Get PDF
    There has been a dramatic increase over the last decade in research on technologies for enhancing movement training and exercise for people with a disability. This paper reviews some of the recent developments in this area, using examples from a National Science Foundation initiated study of mobility research projects in Europe to illustrate important themes and key directions for future research. This paper also reviews several recent studies aimed at combining movement training with plasticity or regeneration therapies, again drawing in part from European research examples. Such combination therapies will likely involve complex interactions with motor training that must be understood in order to achieve the goal of eliminating severe motor impairment

    Review of control strategies for robotic movement training after neurologic injury

    Get PDF
    There is increasing interest in using robotic devices to assist in movement training following neurologic injuries such as stroke and spinal cord injury. This paper reviews control strategies for robotic therapy devices. Several categories of strategies have been proposed, including, assistive, challenge-based, haptic simulation, and coaching. The greatest amount of work has been done on developing assistive strategies, and thus the majority of this review summarizes techniques for implementing assistive strategies, including impedance-, counterbalance-, and EMG- based controllers, as well as adaptive controllers that modify control parameters based on ongoing participant performance. Clinical evidence regarding the relative effectiveness of different types of robotic therapy controllers is limited, but there is initial evidence that some control strategies are more effective than others. It is also now apparent there may be mechanisms by which some robotic control approaches might actually decrease the recovery possible with comparable, non-robotic forms of training. In future research, there is a need for head-to-head comparison of control algorithms in randomized, controlled clinical trials, and for improved models of human motor recovery to provide a more rational framework for designing robotic therapy control strategies

    Feasibility of Manual Teach-and-Replay and Continuous Impedance Shaping for Robotic Locomotor Training Following Spinal Cord Injury

    Get PDF
    Robotic gait training is an emerging technique for retraining walking ability following spinal cord injury (SCI). A key challenge in this training is determining an appropriate stepping trajectory and level of assistance for each patient, since patients have a wide range of sizes and impairment levels. Here, we demonstrate how a lightweight yet powerful robot can record subject-specific, trainer-induced leg trajectories during manually assisted stepping, then immediately replay those trajectories. Replay of the subject-specific trajectories reduced the effort required by the trainer during manual assistance, yet still generated similar patterns of muscle activation for six subjects with a chronic SCI. We also demonstrate how the impedance of the robot can be adjusted on a step-by-step basis with an error-based, learning law. This impedance-shaping algorithm adapted the robot's impedance so that the robot assisted only in the regions of the step trajectory where the subject consistently exhibited errors. The result was that the subjects stepped with greater variability, while still maintaining a physiologic gait pattern. These results are further steps toward tailoring robotic gait training to the needs of individual patients

    Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed

    Get PDF
    BACKGROUND: A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. METHODS: Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. RESULTS: We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. CONCLUSION: The assist-as-needed algorithm proposed here can limit error during the learning of a dynamic motor task. The algorithm encourages learning by decreasing its assistance as a function of the ongoing progression of movement error. This type of algorithm is well suited for helping people learn dynamic tasks for which large kinematic errors are dangerous or discouraging, and thus may prove useful for robot-assisted movement training of walking or reaching following neurologic injury

    Personalized neuromusculoskeletal modeling to improve treatment of mobility impairments: a perspective from European research sites

    Get PDF
    Mobility impairments due to injury or disease have a significant impact on quality of life. Consequently, development of effective treatments to restore or replace lost function is an important societal challenge. In current clinical practice, a treatment plan is often selected from a standard menu of options rather than customized to the unique characteristics of the patient. Furthermore, the treatment selection process is normally based on subjective clinical experience rather than objective prediction of post-treatment function. The net result is treatment methods that are less effective than desired at restoring lost function. This paper discusses the possible use of personalized neuromusculoskeletal computer models to improve customization, objectivity, and ultimately effectiveness of treatments for mobility impairments. The discussion is based on information gathered from academic and industrial research sites throughout Europe, and both clinical and technical aspects of personalized neuromusculoskeletal modeling are explored. On the clinical front, we discuss the purpose and process of personalized neuromusculoskeletal modeling, the application of personalized models to clinical problems, and gaps in clinical application. On the technical front, we discuss current capabilities of personalized neuromusculoskeletal models along with technical gaps that limit future clinical application. We conclude by summarizing recommendations for future research efforts that would allow personalized neuromusculoskeletal models to make the greatest impact possible on treatment design for mobility impairments

    Targeting Neuroplasticity to Improve Motor Recovery after Stroke

    Get PDF
    After neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity (TNP) protocols interact with the CNS to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different TNP protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (1) study the mechanisms and patterns of cortical reorganization after a stroke, and (2) identify and parameterize a TNP protocol that improves recovery of extension force. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal force recovery. To enhance recovery, we interdigitated standard trials with trials in which the teaching signal came from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on 5-20% of the total trials restored lateralized cortical activation and improved recovery of extension force. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable identification and parameterization of the most promising TNP protocols. By providing initial guidance, computational models could facilitate and accelerate realization of new therapies that improve motor recovery

    Targeting Neuroplasticity to Improve Motor Recovery after Stroke

    Get PDF
    After neurological injury, people develop abnormal patterns of neural activity that limit motor recovery. Traditional rehabilitation, which concentrates on practicing impaired skills, is seldom fully effective. New targeted neuroplasticity (TNP) protocols interact with the CNS to induce beneficial plasticity in key sites and thereby enable wider beneficial plasticity. They can complement traditional therapy and enhance recovery. However, their development and validation is difficult because many different TNP protocols are conceivable, and evaluating even one of them is lengthy, laborious, and expensive. Computational models can address this problem by triaging numerous candidate protocols rapidly and effectively. Animal and human empirical testing can then concentrate on the most promising ones. Here we simulate a neural network of corticospinal neurons that control motoneurons eliciting unilateral finger extension. We use this network to (1) study the mechanisms and patterns of cortical reorganization after a stroke, and (2) identify and parameterize a TNP protocol that improves recovery of extension force. After a simulated stroke, standard training produced abnormal bilateral cortical activation and suboptimal force recovery. To enhance recovery, we interdigitated standard trials with trials in which the teaching signal came from a targeted population of sub-optimized neurons. Targeting neurons in secondary motor areas on 5-20% of the total trials restored lateralized cortical activation and improved recovery of extension force. The results illuminate mechanisms underlying suboptimal cortical activity post-stroke; they enable identification and parameterization of the most promising TNP protocols. By providing initial guidance, computational models could facilitate and accelerate realization of new therapies that improve motor recovery

    Single degree-of-freedom exoskeleton mechanism design for finger rehabilitation

    Get PDF
    This paper presents the kinematic design of a single degree-of-freedom exoskeleton mechanism: a planar eight-bar mechanism for finger curling. The mechanism is part of a fingerthumb robotic device for hand therapy that will allow users to practice key pinch grip and finger-thumb opposition, allowing discrete control inputs for playing notes on a musical gaming interface. This approach uses the mechanism to generate the desired grasping trajectory rather than actuating the joints of the fingers and thumb independently. In addition, the mechanism is confined to the back of the hand, so as to allow sensory input into the palm of the hand, minimal size and apparent inertia, and the possibility of placing multiple mechanisms side-by-side to allow control of individual fingersPeer ReviewedPostprint (author’s final draft

    Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Practicing arm and gait movements with robotic assistance after neurologic injury can help patients improve their movement ability, but patients sometimes reduce their effort during training in response to the assistance. Reduced effort has been hypothesized to diminish clinical outcomes of robotic training. To better understand patient slacking, we studied the role of visual distraction and auditory feedback in modulating patient effort during a common robot-assisted tracking task.</p> <p>Methods</p> <p>Fourteen participants with chronic left hemiparesis from stroke, five control participants with chronic right hemiparesis and fourteen non-impaired healthy control participants, tracked a visual target with their arms while receiving adaptive assistance from a robotic arm exoskeleton. We compared four practice conditions: the baseline tracking task alone; tracking while also performing a visual distracter task; tracking with the visual distracter and sound feedback; and tracking with sound feedback. For the distracter task, symbols were randomly displayed in the corners of the computer screen, and the participants were instructed to click a mouse button when a target symbol appeared. The sound feedback consisted of a repeating beep, with the frequency of repetition made to increase with increasing tracking error.</p> <p>Results</p> <p>Participants with stroke halved their effort and doubled their tracking error when performing the visual distracter task with their left hemiparetic arm. With sound feedback, however, these participants increased their effort and decreased their tracking error close to their baseline levels, while also performing the distracter task successfully. These effects were significantly smaller for the participants who used their non-paretic arm and for the participants without stroke.</p> <p>Conclusions</p> <p>Visual distraction decreased participants effort during a standard robot-assisted movement training task. This effect was greater for the hemiparetic arm, suggesting that the increased demands associated with controlling an affected arm make the motor system more prone to slack when distracted. Providing an alternate sensory channel for feedback, i.e., auditory feedback of tracking error, enabled the participants to simultaneously perform the tracking task and distracter task effectively. Thus, incorporating real-time auditory feedback of performance errors might improve clinical outcomes of robotic therapy systems.</p
    • …
    corecore