4 research outputs found

    Evaluation of pharmacological rescue of melanocortin-4 receptor nonsense mutations by aminoglycoside

    Get PDF
    This research was funded by the Deutsche Forschungsgemeinschaft (DFG) (German Research Foundation) through SFB1423, project number 421152132, subprojects B02 to H.B. and P.K., A01 and Z03 to P.S., and C03 to P.A., and project numbers 430971019, 430970922 and KU 2673/6-1 to P.K., and by the European Union’s Horizon 2020 MSCA Program under grant agreement 956314 (ALLODD) to P.S.The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations' position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.Publisher PDFPeer reviewe

    A Setmelanotide-like Effect at MC4R Is Achieved by MC4R Dimer Separation

    No full text
    Melanocortin 4 receptor (MC4R) is part of the leptin-melanocortin pathway and plays an essential role in mediating energy homeostasis. Mutations in the MC4R are the most frequent monogenic cause for obesity. Due to increasing numbers of people with excess body weight, the MC4R has become a target of interest in the search of treatment options. We have previously reported that the MC4R forms homodimers, affecting receptor Gs signaling properties. Recent studies introducing setmelanotide, a novel synthetic MC4R agonist, suggest a predominant role of the Gq/11 pathway regarding weight regulation. In this study, we analyzed effects of inhibiting homodimerization on Gq/11 signaling using previously reported MC4R/CB1R chimeras. NanoBRETTM studies to determine protein–protein interaction were conducted, confirming decreased homodimerization capacities of chimeric receptors in HEK293 cells. Gq/11 signaling of chimeric receptors was analyzed using luciferase-based reporter gene (NFAT) assays. Results demonstrate an improvement of alpha-MSHinduced NFAT signaling of chimeras, reaching the level of setmelanotide signaling at wild-type MC4R (MC4R-WT). In summary, our study shows that inhibiting homodimerization has a setmelanotide-like effect on Gq/11 signaling, with chimeric receptors presenting increased potency compared to MC4RWT. These findings indicate the potential of inhibiting MC4R homodimerization as a therapeutic target to treat obesity

    Evaluation of pharmacological rescue of melanocortin-4 receptor nonsense mutations by aminoglycoside

    No full text
    The melanocortin-4 receptor (MC4R) is critical for central satiety regulation, therefore presenting a potent target for pharmacological obesity treatment. Melanocortin-4 receptor mutations prevalently cause monogenetic obesity. A possibility of overcoming stop mutations is aminoglycoside-mediated translational readthrough. Promising results were achieved in COS-7 cells, but data for human cell systems are still missing, so uncertainty surrounds this potential treatment. In transfected HEK-293 cells, we tested whether translational readthrough by aminoglycoside Geneticin combined with high-affinity ligand setmelanotide, which is effective in proopiomelanocortin or leptin receptor deficiency patients, is a treatment option for affected patients. Five MC4R nonsense mutants (W16X, Y35X_D37V, E61X, W258X, Q307X) were investigated. Confocal microscopy and cell surface expression assays revealed the importance of the mutations' position within the MC4R. N-terminal mutants were marginally expressed independent of Geneticin treatment, whereas mutants with nonsense mutations in transmembrane helix 6 or helix 8 showed wild-type-like expression. For functional analysis, Gs and Gq/11 signaling were measured. N-terminal mutants (W16X, Y35X_D37V) showed no cAMP formation after challenge with alpha-MSH or setmelanotide, irrespective of Geneticin treatment. Similarly, Gs activation was almost impossible in W258X and Q307X with wild-type-like cell surface expression. Results for Gq/11 signaling were comparable. Based on our data, this approach improbably represents a therapeutic option.</p
    corecore