2,126 research outputs found

    Cohomological tautness for Riemannian foliations

    Full text link
    In this paper we present some new results on the tautness of Riemannian foliations in their historical context. The first part of the paper gives a short history of the problem. For a closed manifold, the tautness of a Riemannian foliation can be characterized cohomologically. We extend this cohomological characterization to a class of foliations which includes the foliated strata of any singular Riemannian foliation of a closed manifold

    Force balance and membrane shedding at the Red Blood Cell surface

    Full text link
    During the aging of the red-blood cell, or under conditions of extreme echinocytosis, membrane is shed from the cell plasma membrane in the form of nano-vesicles. We propose that this process is the result of the self-adaptation of the membrane surface area to the elastic stress imposed by the spectrin cytoskeleton, via the local buckling of membrane under increasing cytoskeleton stiffness. This model introduces the concept of force balance as a regulatory process at the cell membrane, and quantitatively reproduces the rate of area loss in aging red-blood cells.Comment: 4 pages, 3 figure

    Topology Change and Causal Continuity

    Get PDF
    The result that, for a scalar quantum field propagating on a ``trousers'' topology in 1+1 dimensions, the crotch singularity is a source for an infinite burst of energy has been used to argue against the occurrence of topology change in quantum gravity. We draw attention to a conjecture due to Sorkin that it may be the particular type of topology change involved in the trousers transition that is problematic and that other topology changes may not cause the same difficulties. The conjecture links the singular behaviour to the existence of ``causal discontinuities'' in the spacetime and relies on a classification of topology changes using Morse theory. We investigate various topology changing transitions, including the pair production of black holes and of topological geons, in the light of these ideas.Comment: Latex, 28 pages, 10 figures, small changes in text (one figure removed), conclusions remain unchanged. Accepted for publication in Physical Review

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector spin-orbit terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the systematic framework of chiral perturbation theory by computing the isovector spin-orbit terms: (ρpρn)(JpJn)Gso(kf)+(JpJn)2GJ(kf)(\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so}(k_f)+ (\vec J_p-\vec J_n)^2 G_J(k_f). The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a good equation of state of isospin-symmetric nuclear matter. We find that the parameterfree results for the (density-dependent) strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) agree fairly well with that of phenomenological Skyrme forces for densities ρ>ρ0/10\rho > \rho_0/10. At very low densities a strong variation of the strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) with density sets in. This has to do with chiral singularities mπ1m_\pi^{-1} and the presence of two competing small mass scales kfk_f and mπm_\pi. The novel density dependencies of Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) as predicted by our parameterfree (leading order) calculation should be examined in nuclear structure calculations.Comment: 9 pages, 3 figure, published in: Physical Review C68, 014323 (2003

    Modified differentials and basic cohomology for Riemannian foliations

    Full text link
    We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincar\'e duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.Comment: 20 pages, references added, minor corrections mad

    PRIVATE SAVINGS IN TRANSITION ECONOMIES: ARE THERE TERMS OF TRADE SHOCKS?

    Get PDF
    The paper examines the impact of terms of trade shocks on private savings in the transition economies after accounting for the effect of other determinants. Economic agents in the transition economies are subject to tight credit constraints which are more pronounced during bad state of nature. Thus, adverse shocks to commodity prices in the world market can force them to reduce savings by a larger amount than they would otherwise have. Empirical analysis using a dynamic panel model and data from twenty one transition economies confirm that most of the determinants of savings identified in the literature also apply to the transition economies. Favorable movements in both the permanent and transitory components of the terms of trade have a significant positive impact on private savings with transitory movements having a larger impact than the permanent component. This reflects the lack of access to foreign borrowing that many of the transition economies have faced during the last decade. Although the impact of terms of trade shocks are found to be asymmetric, the magnitude of the impact appears to be small. The results are robust for alternative estimators, determinants, and country groupings.http://deepblue.lib.umich.edu/bitstream/2027.42/39958/3/wp572.pd

    Consensus, uncertainties and challenges for perennial bioenergy crops and land-use

    Get PDF
    Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land-use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost-effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence-based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land-use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land-use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life-cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry
    corecore