18 research outputs found

    Perivascular macrophages in the neonatal macaque brain undergo massive necroptosis after simian immunodeficiency virus infection

    Get PDF
    We previously showed that rhesus macaques neonatally infected with simian immunodeficiency virus (SIV) do not develop SIV encephalitis (SIVE) and maintain low brain viral loads despite having similar plasma viral loads compared to SIV-infected adults. We hypothesize that differences in myeloid cell populations that are the known target of SIV and HIV in the brain contribute to the lack of neonatal susceptibility to lentivirus-induced encephalitis. Using immunohistochemistry and immunofluorescence microscopy, we examined the frontal cortices from uninfected and SIV-infected infant and adult macaques (n = 8/ea) as well as adults with SIVE (n = 4) to determine differences in myeloid cell populations. The number of CD206+ brain perivascular macrophages (PVMs) was significantly greater in uninfected infants than in uninfected adults and was markedly lower in SIV-infected infants while microglia numbers were unchanged across groups. CD206+ PVMs, which proliferate after infection in SIV infected adults, did not undergo proliferation in infants. While virtually all CD206+ cells in adults are also CD163+, infants have a distinct CD206 single-positive population in addition to the double-positive population commonly seen in adults. Notably, we found that more than 60% of these unique CD206+CD163− PVMs in SIV-infected infants were positive for cleaved caspase-3, an indicator of apoptosis, and that nearly 100% of this subset were concomitantly positive for the necroptosis marker receptor interacting protein kinase-3 (RIP3). These findings show that distinct subpopulations of PVMs found in infants undergo programmed cell death instead of proliferation following SIV infection, which may lead to the absence of PVM-dependent SIVE and the limited size of the virus reservoir in the infant brain. Includes Supplementary Material

    Perivascular macrophages in the neonatal macaque brain undergo massive necroptosis after simian immunodeficiency virus infection

    No full text
    We previously showed that rhesus macaques neonatally infected with simian immunodeficiency virus (SIV) do not develop SIV encephalitis (SIVE) and maintain low brain viral loads despite having similar plasma viral loads compared to SIV-infected adults. We hypothesize that differences in myeloid cell populations that are the known target of SIV and HIV in the brain contribute to the lack of neonatal susceptibility to lentivirus-induced encephalitis. Using immunohistochemistry and immunofluorescence microscopy, we examined the frontal cortices from uninfected and SIV-infected infant and adult macaques (n = 8/ea) as well as adults with SIVE (n = 4) to determine differences in myeloid cell populations. The number of CD206+ brain perivascular macrophages (PVMs) was significantly greater in uninfected infants than in uninfected adults and was markedly lower in SIV-infected infants while microglia numbers were unchanged across groups. CD206+ PVMs, which proliferate after infection in SIV infected adults, did not undergo proliferation in infants. While virtually all CD206+ cells in adults are also CD163+, infants have a distinct CD206 single-positive population in addition to the double-positive population commonly seen in adults. Notably, we found that more than 60% of these unique CD206+CD163− PVMs in SIV-infected infants were positive for cleaved caspase-3, an indicator of apoptosis, and that nearly 100% of this subset were concomitantly positive for the necroptosis marker receptor interacting protein kinase-3 (RIP3). These findings show that distinct subpopulations of PVMs found in infants undergo programmed cell death instead of proliferation following SIV infection, which may lead to the absence of PVM-dependent SIVE and the limited size of the virus reservoir in the infant brain. Includes Supplementary Material

    Differential decay of parent-of-origin-specific genomic sharing in cystic fibrosis-affected sib pairs maps a paternally imprinted locus to 7q34

    No full text
    Cystic fibrosis (CF) is a monogenic disease characterized by a high variability of disease severity and outcome that points to the role of environmental factors and modulating genes that shape the course of this multiorgan disease. We genotyped families of cystic fibrosis sib pairs homozygous for F508del-CFTR who represent extreme clinical phenotypes at informative microsatellite markers spanning a 38 Mb region between CFTR and 7qtel. Recombination events on both parental chromosomes were compared between siblings with concordant clinical phenotypes and siblings with discordant clinical phenotypes. Monitoring parent-of-origin-specific decay of genomic sharing delineated a 2.9-Mb segment on 7q34 in which excess of recombination on paternal chromosomes in discordant pairs was observed compared with phenotypically concordant sibs. This 2.9-Mb core candidate region was enriched in imprinting-related elements such as predicted CCCTC-binding factor consensus sites and CpG islands dense in repetitive elements. Moreover, allele frequencies at a microsatellite marker within the core candidate region differed significantly comparing mildly and severely affected cystic fibrosis sib pairs. The identification of this paternally imprinted locus on 7q34 as a modulator of cystic fibrosis disease severity shows that imprinted elements can be identified by straightforward fine mapping of break points in sib pairs with informative contrasting phenotypes

    Credit Supply and Productivity Growth

    No full text
    corecore