3,858 research outputs found

    A framework for deflated and augmented Krylov subspace methods

    Get PDF
    We consider deflation and augmentation techniques for accelerating the convergence of Krylov subspace methods for the solution of nonsingular linear algebraic systems. Despite some formal similarity, the two techniques are conceptually different from preconditioning. Deflation (in the sense the term is used here) "removes" certain parts from the operator making it singular, while augmentation adds a subspace to the Krylov subspace (often the one that is generated by the singular operator); in contrast, preconditioning changes the spectrum of the operator without making it singular. Deflation and augmentation have been used in a variety of methods and settings. Typically, deflation is combined with augmentation to compensate for the singularity of the operator, but both techniques can be applied separately. We introduce a framework of Krylov subspace methods that satisfy a Galerkin condition. It includes the families of orthogonal residual (OR) and minimal residual (MR) methods. We show that in this framework augmentation can be achieved either explicitly or, equivalently, implicitly by projecting the residuals appropriately and correcting the approximate solutions in a final step. We study conditions for a breakdown of the deflated methods, and we show several possibilities to avoid such breakdowns for the deflated MINRES method. Numerical experiments illustrate properties of different variants of deflated MINRES analyzed in this paper.Comment: 24 pages, 3 figure

    Fluid pumped by magnetic stress

    Full text link
    A magnetic field rotating on the free surface of a ferrofluid layer is shown to induce considerable fluid motion toward the direction the field is rolling. The measured flow velocity i) increases with the square of the magnetic field amplitude, ii) is proportional to the thickness of the fluid layer, and iii) has a maximum at a driving frequency of about 3 kHz. The pumping speed can be estimated with a two-dimensional flow model.Comment: 3 pages, 4 figure

    Time resolved fission in metal clusters

    Full text link
    We explore from a theoretical point of view pump and probe (P&P) analysis for fission of metal clusters where probe pulses are generalized to allow for scanning various frequencies. We show that it is possible to measure the time the system needs to develop to scission. This is achieved by a proper choice of both delay and frequency of the probe pulse. A more detailed analysis even allows to access the various intermediate stages of the fission process.Comment: 4 pages, 4 figure

    The Human Cytomegalovirus Fc Receptor gp68 Binds the Fc CH2-CH3 Interface of Immunoglobulin G

    Get PDF
    Recognition of immunoglobulin G (IgG) by surface receptors for the Fc domain of immunoglobulin G (Fc{gamma}), Fc{gamma}Rs, can trigger both humoral and cellular immune responses. Two human cytomegalovirus (HCMV)-encoded type I transmembrane receptors with Fc{gamma}-binding properties (vFc{gamma}Rs), gp34 and gp68, have been identified on the surface of HCMV-infected cells and are assumed to confer protection against IgG-mediated immunity. Here we show that Fc{gamma} recognition by both vFc{gamma}Rs occurs independently of N-linked glycosylation of Fc{gamma}, in contrast with the properties of host Fc{gamma}Rs. To gain further insight into the interaction with Fc{gamma}, truncation mutants of the vFc{gamma}R gp68 ectodomain were probed for Fc{gamma} binding, resulting in localization of the Fc{gamma} binding site on gp68 to residues 71 to 289, a region including an immunoglobulin-like domain. Gel filtration and biosensor binding experiments revealed that, unlike host Fc{gamma}Rs but similar to the herpes simplex virus type 1 (HSV-1) Fc receptor gE-gI, gp68 binds to the CH2-CH3 interdomain interface of the Fc{gamma} dimer with a nanomolar affinity and a 2:1 stoichiometry. Unlike gE-gI, which binds Fc{gamma} at the slightly basic pH of the extracellular milieu but not at the acidic pH of endosomes, the gp68/Fc{gamma} complex is stable at pH values from 5.6 to pH 8.1. These data indicate that the mechanistic details of Fc binding by HCMV gp68 differ from those of host Fc{gamma}Rs and from that of HSV-1 gE-gI, suggesting distinct functional and recognition properties

    Adhesion of surfaces via particle adsorption: Exact results for a lattice of fluid columns

    Full text link
    We present here exact results for a one-dimensional gas, or fluid, of hard-sphere particles with attractive boundaries. The particles, which can exchange with a bulk reservoir, mediate an interaction between the boundaries. A two-dimensional lattice of such one-dimensional gas `columns' represents a discrete approximation of a three-dimensional gas of particles between two surfaces. The effective particle-mediated interaction potential of the boundaries, or surfaces, is calculated from the grand-canonical partition function of the one-dimensional gas of particles, which is an extension of the well-studied Tonks gas. The effective interaction potential exhibits two minima. The first minimum at boundary contact reflects depletion interactions, while the second minimum at separations close to the particle diameter results from a single adsorbed particle that crosslinks the two boundaries. The second minimum is the global minimum for sufficiently large binding energies of the particles. Interestingly, the effective adhesion energy corresponding to this minimum is maximal at intermediate concentrations of the particles.Comment: to appear in Journal of Statistical Mechanics: Theory and Experimen

    Relativistic Hartree-Bogoliubov Approach for Nuclear Matter with Non-Linear Coupling Terms

    Get PDF
    We investigate the pairing property of nuclear matter with Relativistic Hartree-Bogoliubov(RHB) approach. Recently, the RHB approach has been widely applied to nuclear matter and finite nuclei. We have extended the RHB approach to be able to include non-linear coupling terms of mesons. In this paper we apply it to nuclear matter and observe the effect of non-linear terms on pairing gaps.Comment: 13 pages, 5 figure

    Soliton binding and low-lying singlets in frustrated odd-legged S=1/2 spin tubes

    Full text link
    Motivated by the intriguing properties of the vanadium spin tube Na2V3O7, we show that an effective spin-chirality model similar to that of standard Heisenberg odd-legged S=1/2 spin tubes can be derived for frustrated inter-ring couplings, but with a spin-chirality coupling constant alpha that can be arbitrarily small. Using density matrix renormalization group and analytical arguments, we show that, while spontaneous dimerization is always present, solitons become bound into low-lying singlets as alpha is reduced. Experimental implications for strongly frustrated tubes are discussed.Comment: 4 pages, 4 figure

    Self-Consistent Separable Rpa Approach for Skyrme Forces: Axial Nuclei

    Get PDF
    The self-consistent separable RPA (random phase approximation) method is formulated for Skyrme forces with pairing. The method is based on a general self-consistent procedure for factorization of the two-body interaction. It is relevant for various density- and current-dependent functionals. The contributions of the time-even and time-odd Skyrme terms as well as of the Coulomb and pairing terms to the residual interaction are taken self-consistently into account. Most of the expression have a transparent analytical form, which makes the method convenient for the treatment and analysis. The separable character of the residual interaction allows to avoid diagonalization of high-rank RPA matrices and thus to minimize the calculation effort. The previous studies have demonstrated high numerical accuracy and efficiency of the method for spherical nuclei. In this contribution, the method is specified for axial nuclei. We provide systematic and detailed presentation of formalism and discuss different aspects of the model.Comment: 42 page

    Measurement uncertainty relations

    Get PDF
    Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here we prove such relations for the case of two canonically conjugate observables like position and momentum, and establish a close connection with the more familiar preparation uncertainty relations constraining the sharpness of the distributions of the two observables in the same state. Both sets of relations are generalized to means of order α\alpha rather than the usual quadratic means, and we show that the optimal constants are the same for preparation and for measurement uncertainty. The constants are determined numerically and compared with some bounds in the literature. In both cases the near-saturation of the inequalities entails that the state (resp. observable) is uniformly close to a minimizing one.Comment: This version 2 contains minor corrections and reformulation

    Photoproduction evidence for and against hidden-strangeness states near 2 GeV

    Get PDF
    Experimental evidence from coherent diffractive proton scattering has been reported for two narrow baryonic resonances which decay predominantly to strange particles. These states, with masses close to 2.0 GeV would, if confirmed, be candidates for hidden strangeness states with unusual internal structure. In this paper we examine the literature on strangeness photoproduction, to seek additional evidence for or against these states. We find that one state is not confirmed, while for the other state there is some mild supporting evidence favoring its existence. New experiments are called for, and the expected photoproduction lineshapes are calculated.Comment: 9 pages, RevTex, five postscript figures, submitted to PR
    • …
    corecore