Recognition of immunoglobulin G (IgG) by surface receptors for the Fc domain of immunoglobulin G (Fc{gamma}), Fc{gamma}Rs, can trigger both humoral and cellular immune responses. Two human cytomegalovirus (HCMV)-encoded type I transmembrane receptors with Fc{gamma}-binding properties (vFc{gamma}Rs), gp34 and gp68, have been identified on the surface of HCMV-infected cells and are assumed to confer protection against IgG-mediated immunity. Here we show that Fc{gamma} recognition by both vFc{gamma}Rs occurs independently of N-linked glycosylation of Fc{gamma}, in contrast with the properties of host Fc{gamma}Rs. To gain further insight into the interaction with Fc{gamma}, truncation mutants of the vFc{gamma}R gp68 ectodomain were probed for Fc{gamma} binding, resulting in localization of the Fc{gamma} binding site on gp68 to residues 71 to 289, a region including an immunoglobulin-like domain. Gel filtration and biosensor binding experiments revealed that, unlike host Fc{gamma}Rs but similar to the herpes simplex virus type 1 (HSV-1) Fc receptor gE-gI, gp68 binds to the CH2-CH3 interdomain interface of the Fc{gamma} dimer with a nanomolar affinity and a 2:1 stoichiometry. Unlike gE-gI, which binds Fc{gamma} at the slightly basic pH of the extracellular milieu but not at the acidic pH of endosomes, the gp68/Fc{gamma} complex is stable at pH values from 5.6 to pH 8.1. These data indicate that the mechanistic details of Fc binding by HCMV gp68 differ from those of host Fc{gamma}Rs and from that of HSV-1 gE-gI, suggesting distinct functional and recognition properties