938 research outputs found

    Outbreak investigations--a perspective.

    Get PDF
    Outbreak investigations, an important and challenging component of epidemiology and public health, can help identify the source of ongoing outbreaks and prevent additional cases. Even when an outbreak is over, a thorough epidemiologic and environmental investigation often can increase our knowledge of a given disease and prevent future outbreaks. Finally, outbreak investigations provide epidemiologic training and foster cooperation between the clinical and public health communities

    Visual search in ecological and non-ecological displays: Evidence for a non-monotonic effect of complexity on performance

    Get PDF
    Copyright @ 2013 PLoSThis article has been made available through the Brunel Open Access Publishing Fund.Considerable research has been carried out on visual search, with single or multiple targets. However, most studies have used artificial stimuli with low ecological validity. In addition, little is known about the effects of target complexity and expertise in visual search. Here, we investigate visual search in three conditions of complexity (detecting a king, detecting a check, and detecting a checkmate) with chess players of two levels of expertise (novices and club players). Results show that the influence of target complexity depends on level of structure of the visual display. Different functional relationships were found between artificial (random chess positions) and ecologically valid (game positions) stimuli: With artificial, but not with ecologically valid stimuli, a “pop out” effect was present when a target was visually more complex than distractors but could be captured by a memory chunk. This suggests that caution should be exercised when generalising from experiments using artificial stimuli with low ecological validity to real-life stimuli.This study is funded by Brunel University and the article is made available through the Brunel Open Access Publishing Fund

    Entangled networks, synchronization, and optimal network topology

    Full text link
    A new family of graphs, {\it entangled networks}, with optimal properties in many respects, is introduced. By definition, their topology is such that optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node-distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community-structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost-optimal in many senses, and with plenty of potential applications computer science or neuroscience.Comment: Slightly modified version, as accepted in Phys. Rev. Let

    Pseudorandomness for Regular Branching Programs via Fourier Analysis

    Full text link
    We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log2n)O(\log^2 n), where nn is the length of the branching program. The previous best seed length known for this model was n1/2+o(1)n^{1/2+o(1)}, which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of s1/2+o(1)s^{1/2+o(1)} for arbitrary branching programs of size ss). Our techniques also give seed length n1/2+o(1)n^{1/2+o(1)} for general oblivious, read-once branching programs of width 2no(1)2^{n^{o(1)}}, which is incomparable to the results of Impagliazzo et al.Our pseudorandom generator is similar to the one used by Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite different; ours is based on Fourier analysis of branching programs. In particular, we show that an oblivious, read-once, regular branching program of width ww has Fourier mass at most (2w2)k(2w^2)^k at level kk, independent of the length of the program.Comment: RANDOM 201

    Area Decay Law Implementation for Quark String Fragmentation

    Full text link
    We apply the Area Decay Law (ADL) straightforwardly to simulate a quark string hadronization and compare the results with the explicit analytic calculations. We show that the usual "inclusive" Monte--Carlo simulations do not correspond to the ADL because of two mistakes: not proper simulation of two--dimensional probability density and lack of an important combinatorial factor in a binary tree simulation. We also show how to simulate area decay law "inclusively" avoiding the above--mentioned mistakes.Comment: 5 pages (REVTEX) + 3 figures (available in ps format from G.G.Leptoukh , IPGAS-HE/93-3, to be published in Phys. Rev.

    Constraint Satisfaction with Counting Quantifiers

    Full text link
    We initiate the study of constraint satisfaction problems (CSPs) in the presence of counting quantifiers, which may be seen as variants of CSPs in the mould of quantified CSPs (QCSPs). We show that a single counting quantifier strictly between exists^1:=exists and exists^n:=forall (the domain being of size n) already affords the maximal possible complexity of QCSPs (which have both exists and forall), being Pspace-complete for a suitably chosen template. Next, we focus on the complexity of subsets of counting quantifiers on clique and cycle templates. For cycles we give a full trichotomy -- all such problems are in L, NP-complete or Pspace-complete. For cliques we come close to a similar trichotomy, but one case remains outstanding. Afterwards, we consider the generalisation of CSPs in which we augment the extant quantifier exists^1:=exists with the quantifier exists^j (j not 1). Such a CSP is already NP-hard on non-bipartite graph templates. We explore the situation of this generalised CSP on bipartite templates, giving various conditions for both tractability and hardness -- culminating in a classification theorem for general graphs. Finally, we use counting quantifiers to solve the complexity of a concrete QCSP whose complexity was previously open

    From Low-Distortion Norm Embeddings to Explicit Uncertainty Relations and Efficient Information Locking

    Full text link
    The existence of quantum uncertainty relations is the essential reason that some classically impossible cryptographic primitives become possible when quantum communication is allowed. One direct operational manifestation of these uncertainty relations is a purely quantum effect referred to as information locking. A locking scheme can be viewed as a cryptographic protocol in which a uniformly random n-bit message is encoded in a quantum system using a classical key of size much smaller than n. Without the key, no measurement of this quantum state can extract more than a negligible amount of information about the message, in which case the message is said to be "locked". Furthermore, knowing the key, it is possible to recover, that is "unlock", the message. In this paper, we make the following contributions by exploiting a connection between uncertainty relations and low-distortion embeddings of L2 into L1. We introduce the notion of metric uncertainty relations and connect it to low-distortion embeddings of L2 into L1. A metric uncertainty relation also implies an entropic uncertainty relation. We prove that random bases satisfy uncertainty relations with a stronger definition and better parameters than previously known. Our proof is also considerably simpler than earlier proofs. We apply this result to show the existence of locking schemes with key size independent of the message length. We give efficient constructions of metric uncertainty relations. The bases defining these metric uncertainty relations are computable by quantum circuits of almost linear size. This leads to the first explicit construction of a strong information locking scheme. Moreover, we present a locking scheme that is close to being implementable with current technology. We apply our metric uncertainty relations to exhibit communication protocols that perform quantum equality testing.Comment: 60 pages, 5 figures. v4: published versio

    Welfare and Homelessness in Indianapolis: Populations at Risk and Barriers to Self-Sufficiency, Indianapolis

    Get PDF
    Who are the homeless in Indianapolis? How has welfare reform affected Indianapolis families who rely on public support? What barriers are preventing these populations from becoming self-sufficient? Two recent studies help answer these questions for policymakers and service providers. This issue brief summarizes the studies’ demographic findings, and the problems that erect barriers to self-sufficiency among the poor in Indianapolis
    corecore