1,980 research outputs found
Asymptotic behaviour of gossip processes and small world networks
Both small world models of random networks with occasional long range
connections and gossip processes with occasional long range transmission of
information have similar characteristic behaviour. The long range elements
appreciably reduce the effective distances, measured in space or in time,
between pairs of typical points. In this paper, we show that their common
behaviour can be interpreted as a product of the locally branching nature of
the models. In particular, it is shown that both typical distances between
points and the proportion of space that can be reached within a given distance
or time can be approximated by formulae involving the limit random variable of
the branching process.Comment: 30 page
The shortest distance in random multi-type intersection graphs
Using an associated branching process as the basis of our approximation, we
show that typical inter-point distances in a multitype random intersection
graph have a defective distribution, which is well described by a mixture of
translated and scaled Gumbel distributions, the missing mass corresponding to
the event that the vertices are not in the same component of the graph.Comment: 32 page
The upper-atmosphere extension of the ICON general circulation model (version: Ua-icon-1.0)
How the upper-atmosphere branch of the circulation contributes to and interacts with the circulation of the middle and lower atmosphere is a research area with many open questions. Inertia-gravity waves, for instance, have moved in the focus of research as they are suspected to be key features in driving and shaping the circulation. Numerical atmospheric models are an important pillar for this research. We use the ICOsahedral Non-hydrostatic (ICON) general circulation model, which is a joint development of the Max Planck Institute for Meteorology (MPI-M) and the German Weather Service (DWD), and provides, e.g., local mass conservation, a flexible grid nesting option, and a non-hydrostatic dynamical core formulated on an icosahedral-triangular grid. We extended ICON to the upper atmosphere and present here the two main components of this new configuration named UA-ICON: an extension of the dynamical core from shallow- to deep-atmosphere dynamics and the implementation of an upper-atmosphere physics package. A series of idealized test cases and climatological simulations is performed in order to evaluate the upper-atmosphere extension of ICON. © Author(s) 2019
Structure and transport in multi-orbital Kondo systems
We consider Kondo impurity systems with multiple local orbitals, such as rare
earth ions in a metallic host or multi--level quantum dots coupled to metallic
leads. It is shown that the multiplet structure of the local orbitals leads to
multiple Kondo peaks above the Fermi energy , and to ``shadow'' peaks
below . We use a slave boson mean field theory, which recovers the strong
coupling Fermi liquid fixed point, to calculate the Kondo peak positions,
widths, and heights analytically at T=0, and NCA calculations to fit the
temperature dependence of high--resolution photoemission spectra of Ce
compounds. In addition, an approximate conductance quantization for transport
through multi--level quantum dots or single--atom transistors in the Kondo
regime due to a generalized Friedel sum rule is demonstrated.Comment: 4 pages, 3 figures. Invited article, 23rd International Conference on
Low Temperature Physics LT23, Hiroshima, Japan 200
Fast and accurate read mapping with approximate seeds and multiple backtracking
We present Masai, a read mapper representing the state-of-the-art in terms of speed and accuracy. Our tool is an order of magnitude faster than RazerS 3 and mrFAST, 2-4 times faster and more accurate than Bowtie 2 and BWA. The novelties of our read mapper are filtration with approximate seeds and a method for multiple backtracking. Approximate seeds, compared with exact seeds, increase filtration specificity while preserving sensitivity. Multiple backtracking amortizes the cost of searching a large set of seeds by taking advantage of the repetitiveness of next-generation sequencing data. Combined together, these two methods significantly speed up approximate search on genomic data sets. Masai is implemented in C++ using the SeqAn library. The source code is distributed under the BSD license and binaries for Linux, Mac OS X and Windows can be freely downloaded from http://www.seqan.de/projects/masai
Successful Implementation of Pharmacy Retail Store Loyalty Reward Programs
Loyalty reward programs are utilized within various industries as a key marketing strategy. A successfully implemented loyalty reward program benefits both the consumer and the company. The purpose of this multicase study was to explore strategies that pharmacy retail managers use to deliver loyalty reward programs. The theory of planned behavior was used as the conceptual framework to guide the study. Mobile technology, customer involvement, brand management, and tier-based rewards were the themes that emerged during data analysis. The findings are of interest to pharmacy retail managers and marketers because they are instrumental in implementing a successful loyalty reward program
RazerS 3: Faster, fully sensitive read mapping
Motivation: During the last years NGS sequencing has become a key technology for many applications in the biomedical sciences. Throughput continues to increase and new protocols provide longer reads than currently available. In almost all applications, read mapping is a first step. Hence, it is crucial to have algorithms and implementations that perform fast, with high sensitivity, and are able to deal with long reads and a large absolute number of indels.
Results: RazerS is a read mapping program with adjustable sensitivity based on counting q-grams. In this work we propose the successor RazerS 3 which now supports shared-memory parallelism, an additional seed-based filter with adjustable sensitivity, a much faster, banded version of the Myers’ bit-vector algorithm for verification, memory saving measures and support for the SAM output format. This leads to a much improved performance for mapping reads, in particular long reads with many errors. We extensively compare RazerS 3 with other popular read mappers and show that its results are often superior to them in terms of sensitivity while exhibiting practical and often competetive run times. In addition, RazerS 3 works without a precomputed index.
Availability and Implementation: Source code and binaries are freely available for download at http://www.seqan.de/projects/razers. RazerS 3 is implemented in C++ and OpenMP under a GPL license using the SeqAn library and supports Linux, Mac OS X, and Windows
- …