26 research outputs found

    Energy-converting [NiFe] hydrogenases in archaea and bacteria: insights into the energy-transducing mechanism

    Get PDF
    In recent years a group of multisubunit membrane-bound [NiFe] hydrogenases has been identified in a variety of anaerobic or facultative anaerobic microorganisms. These enzymes share two conserved integral membrane proteins and four conserved hydrophilic proteins with the energy-conserving NADH:quinone oxidoreductases (complex I). Based on experimental evidence derived from physiological and biochemical studies, the various members of this hydrogenase family have been proposed to function as ion pumps being involved in energy-conserving electron transport, reverse electron transport, or both. Therefore these enzymes have been designated energy-converting [NiFe] hydrogenases. In the present work the energy transducing mechanism of energy-converting hydrogenases was studied in comparison to complex I. A particular attention was given to the prosthetic groups involved in the electron transfer pathway, the role of the membrane part and the identification of the coupling ion used by these enzymes. The majority of the experiments were carried out with Ech hydrogenase from Methanosarcina barkeri. The sequence of Ech hydrogenase predicts the binding of three [4Fe-4S] clusters, one by subunit EchC and two by subunit EchF. Previous studies had shown that two of these clusters could be fully reduced under 1 bar of H2 at pH 7 giving rise to two distinct S ½ EPR signals, designated as the g = 1.89 and the g = 1.92 signal. Redox titrations at different pH values demonstrated that these two clusters had a pH-dependent midpoint potential indicating a function in ion pumping. To assign these EPR signals to the subunits of the enzyme a set of M. barkeri mutants was generated in which seven of eight conserved cysteine residues in EchF were individually replaced by serine. EPR spectra recorded from the isolated mutant enzymes revealed a strong reduction or complete loss of the g = 1.92 signal whereas the g =1.89 signal was still detectable as the major EPR signal in five mutant enzymes. It is concluded that the cluster giving rise to the g = 1.89 signal is the proximal cluster located in EchC and that the g = 1.92 signal results from one of the clusters of subunit EchF. The pH-dependent midpoint potential of these two [4Fe-4S] clusters suggests that these clusters simultaneously mediate electron and ion transfer and thus could be an essential part of the ion-translocating machinery. In the two integral membrane subunits of Ech carboxylic residues are found that are highly conserved within the family of energy-converting hydrogenases and complex I. These residues could be part of a transmembrane ion channel. In line with this, Ech hydrogenase activity was inhibited by the carboxyl-modifying reagent N,N’–dicyclohexylcarbodiimide (DCCD). The inhibition of the enzyme correlated quite well with the incorporation of [14C]DCCD in subunits EchA. Using a combination of FT-IR difference spectroscopy and electrochemistry it was shown that the electron transfer reaction catalyzed by Ech hydrogenase from M. barkeri induces a conformational change of the enzyme and the protonation of amino acid side chains. Oxidized minus reduced spectra in the mid infrared range (1800 to 1200 cm-1) revealed conformational changes in the amide I region and a signal at 1720 cm-1 attributed to either an Asp or Glu side chain, protonated in the oxidized state. To identify the coupling ion used by energy converting hydrogenases studies with the enzyme from Carboxydothermus hydrogenoformans were performed. Cell suspensions of C. hydrogenoformans were found to couple the oxidation of CO to CO2 and H2 with the translocation of protons across the membrane at pH 5.9. This transient acidification was inhibited by the protonophore CCCP but was not affected by the sodium ionophore ETH-157, indicating the generation of a primary electrochemical proton gradient. However, no proton translocation coupled to CO oxidation was observed at pH 6.7. On the other hand, at neutral pH, CO oxidation was coupled to sodium ion translocation. This reaction was protonophore insensitive, indicating a primary Na+ translocation. These data indicate that the Coo hydrogenase from C. hydrogenoformans could be a primary sodium pump, which may also use H+ at low pH

    The CCG-domain-containing subunit SdhE of succinate:quinone oxidoreductase from Sulfolobus solfataricus P2 binds a [4Fe–4S] cluster

    Get PDF
    In type E succinate:quinone reductase (SQR), subunit SdhE (formerly SdhC) is thought to function as monotopic membrane anchor of the enzyme. SdhE contains two copies of a cysteine-rich sequence motif (CXnCCGXmCXXC), designated as the CCG domain in the Pfam database and conserved in many proteins. On the basis of the spectroscopic characterization of heterologously produced SdhE from Sulfolobus tokodaii, the protein was proposed in a previous study to contain a labile [2Fe–2S] cluster ligated by cysteine residues of the CCG domains. Using UV/vis, electron paramagnetic resonance (EPR), 57Fe electron–nuclear double resonance (ENDOR) and Mössbauer spectroscopies, we show that after an in vitro cluster reconstitution, SdhE from S. solfataricus P2 contains a [4Fe–4S] cluster in reduced (2+) and oxidized (3+) states. The reduced form of the [4Fe–4S]2+ cluster is diamagnetic. The individual iron sites of the reduced cluster are noticeably heterogeneous and show partial valence localization, which is particularly strong for one unique ferrous site. In contrast, the paramagnetic form of the cluster exhibits a characteristic rhombic EPR signal with gzyx = 2.015, 2.008, and 1.947. This EPR signal is reminiscent of a signal observed previously in intact SQR from S. tokodaii with gzyx = 2.016, 2.00, and 1.957. In addition, zinc K-edge X-ray absorption spectroscopy indicated the presence of an isolated zinc site with an S3(O/N)1 coordination in reconstituted SdhE. Since cysteine residues in SdhE are restricted to the two CCG domains, we conclude that these domains provide the ligands to both the iron–sulfur cluster and the zinc site

    Identifizierung und Charakterisierung zweier fĂĽr die Entwicklung essentieller Serin/Threonin-Proteinkinasen in Myxococcus xanthus

    No full text
    Die Fähigkeit von Myxococcus xanthus zur Bildung von Fruchtkörpern und Myxosporen ist unter anderem vom Austausch interzellulärer Signale abhängig. Das C Signal spielt hierbei eine entscheidende Rolle. Die Erkennung dieses 17 kDa großen Proteins (CsgA) ist abhängig von direktem Zell-Zell-Kontakt, weshalb ein Rezeptor in der äußeren Membran vermutet wird, über den das Signal über die Zellhülle hinweg ins Zytoplasma weitergeleitet wird, wo es die Expression zahlreicher für die Entwicklung notwendiger Gene anschaltet. Das Ziel dieser Arbeit war die Identifizierung von Proteinen, die an der Erkennung und Weiterleitung des C-Signals beteiligt sind, insbesondere des bislang unbekannten CsgA-Rezeptors. CsgA sollte zunächst als natives Protein gereinigt werden, um es für die Identifizierung seiner Interaktionspartner zu verwenden. Hierzu wurde versucht, CsgA mit N- und C-terminalen Affinitäts-Tags in M. xanthus zu produzieren. Dies gelang mit einem N-terminalen His-Tag, und mit diesem Konstrukt wurde die csgA-Mutante erfolgreich komplementiert. Es gibt Hinweise darauf, daß Ser/Thr-Proteinkinasen an der Weiterleitung des C-Signals beteiligt sein könnten. Aufgrund einer bioinformatischen Analyse wurden für ein Mutagenese-Screening mehrere Ser/Thr-Proteinkinasen ausgewählt, die in möglichen Transkriptionseinheiten mit Proteinen der inneren und äußeren Membran kodiert werden. Durch Deletionsmutagenese dieser Kandidaten konnten zwei Kinasen (MXAN4557 und MXAN6570) identifiziert werden, die essentiell für die Fruchtkörperbildung sind. Ihre Inaktivierung führte zu einem kompletten Verlust der Fähigkeit zur Aggregation und Sporulation. MXAN4557 wird mit einem TonB-abhängigen Rezeptor ko-transkribiert und liegt in Nachbarschaft zu einer Ser/Thr-spezifischen Phosphatase. Diese beiden Proteine sind jedoch nicht essentiell für die Entwicklung. Die Kinase MXAN6570 bildet eine Transkriptionseinheit mit einem Protein, welches eine FHA-Domäne trägt und ebenfalls nicht für die Entwicklung notwendig ist. Die Analyse charakteristischer Entwicklungsmarker in den Mutanten der beiden Kinasen zeigte, daß frühe Entwicklungsprozesse nicht beeinträchtigt sind und deutet darauf hin, daß beide Proteine downstream des C-Signals und vor dem Verzweigungspunkt von Aggregation und Sporulation essentiell für das Fortschreiten der Entwicklung sind

    Indentifizierung und Charakterisierung der katalytischen Untereinheit von Heterodisulfid-Reduktase aus methanogenen Archaea

    No full text
    Heterodisulfid-Reduktase (Hdr) aus methanogenen Archaea katalysiert die reversible Reduktion des Heterodisulfids (CoM-S-S-CoB) aus Coenzym M (CoM-SH) und Coenzym B (CoB-SH), welches im letzten Schritt der Methanogenese neben Methan gebildet wird. CoM-Hdr ist ein paramagnetisches Intermediat, das durch die Halbreaktion von oxidiertem Enzym mit CoM-SH entsteht. Frühere spektroskopische Untersuchungen an CoM-Hdr deuteten auf das Vorliegen eines ungewöhnlichen [4Fe-4S]3+-Clusters im aktiven Zentrum des Enzyms hin, bei dem der Cluster mit CoM-SH als Ligand vorliegt. Bislang war nicht sicher, von welcher Hdr-Untereinheit das katalytische Zentrum gebunden wird. In dieser Arbeit konnte gezeigt werden, dass die Untereinheit HdrB des HdrABC-Holoenzyms aus Methanothermobacter marburgensis den [4Fe-4S]-Cluster des katalytischen Zentrums trägt. Dazu wurde die Produktion von HdrB in E. coli optimiert und das [4Fe-4S]-Zentrum in Zellextrakten mit HdrB chemisch in vitro rekonstituiert. Das im Durochinon-oxidierten Zustand erhaltene rhombische EPR-Signal mit gzyx = 2,015, 1,995 und 1,950 war dem von CoM-Hdr sehr ähnlich. Oxidation von HdrB in Gegenwart von CoM-33SH, verbreiterte sich das Signal, was die direkte Bindung von CoM-SH an das [Fe-S]-Zentrum zeigte. EPR-Redoxtitrationen ergaben eine Mittelpunktspotential-Verschiebung des Clusters um etwa 55 mV auf 175 mV ± 10 mV in Anwesenheit von CoM-SH. ENDOR-Spektroskopie mit 57Fe-angereichertem HdrB machte deutlich, dass in Abwesenheit von Substrat oxidiertes HdrB ein [4Fe 4S]-Zentrum enthielt, welches eine zu CoM-Hdr sehr ähnliche elektronische Struktur aufwies. HdrB besitzt zwei in der Pfam-Datenbank als CCG-Domäne annotierte Sequenzmotive mit jeweils fünf Cysteinyl-Resten (CX31-39CCX35-36CXXC). Mutagenese-Studien führten zur Identifizierung der vier Cysteinat-Liganden des [4Fe-4S]-Zentrums. Diese waren ausschließlich in der C terminalen CCG-Domäne von HdrB lokalisiert. XAS-Spektroskopie identifizierte in Hdr eine isolierte Zink-Stelle mit S3(N/O)1-Koordination, die ebenfalls in HdrB lokalisiert war. Auf Grundlage der erhaltenen Daten wurde ein neues Modell für den Katalyse-Zyklus von Hdr vorgeschlagen. Mit der Identifizierung von HdrB als katalytische Untereinheit von Hdr konnte erstmals die Funktion eines CCG-Domänen-Proteins gezeigt werden. Untersuchungen an Untereinheit SdhE von Succinat:Chinon-Oxidoreduktase vom Typ E aus Sulfolobus solfataricus gaben Hinweise auf das Vorliegen eines [4Fe-4S]-Zentrums bei einem weiteren CCG-Domänen-Protein mit offensichtlich anderen Funktionen und Eigenschaften als das in HdrB. Der mögliche evolutionäre Zusammenhang wird diskutiert

    Mechanical damage to Gram-negative bacteria by surface plating with the Drigalski-spatula technique

    Get PDF
    Colony counting by spreading bacterial suspensions on plating media by various techniques is of general concern. Comparative studies between hand plating (Drigalski-spatula technique) for different time intervals and spiral plating resulted in significant differences in colony counts. Lower counts of Gram-negative bacteria were obtained by using hand plating for more than 10 s, compared with short time hand plating (5 s) or spiral plating. Colony counting of Gram-positive bacteria showed no differences between both techniques. Further characterisation of Escherichia coli cells spread with the Drigalski-spatula technique by electron microscopy revealed a large number of damaged cells compared to control samples. The data clearly shows that the mechanical forces during hand plating are sufficient to damage E. coli cells

    Bioinformatics and Experimental Analysis of Proteins of Two-Component Systems in Myxococcus xanthus▿ †

    No full text
    Proteins of two-component systems (TCS) have essential functions in the sensing of external and self-generated signals in bacteria and in the generation of appropriate output responses. Accordingly, in Myxococcus xanthus, TCS are important for normal motility and fruiting body formation and sporulation. Here we analyzed the M. xanthus genome for the presence and genetic organization of genes encoding TCS. Two hundred seventy-two TCS genes were identified, 251 of which are not part of che gene clusters. We report that the TCS genes are unusually organized, with 55% being orphan and 16% in complex gene clusters whereas only 29% display the standard paired gene organization. Hybrid histidine protein kinases and histidine protein kinases predicted to be localized to the cytoplasm are overrepresented among proteins encoded by orphan genes or in complex gene clusters. Similarly, response regulators without output domains are overrepresented among proteins encoded by orphan genes or in complex gene clusters. The most frequently occurring output domains in response regulators are involved in DNA binding and cyclic-di-GMP metabolism. Our analyses suggest that TCS encoded by orphan genes and complex gene clusters are functionally distinct from TCS encoded by paired genes and that the connectivity of the pathways made up of TCS encoded by orphan genes and complex gene clusters is different from that of pathways involving TCS encoded by paired genes. Experimentally, we observed that orphan TCS genes are overrepresented among genes that display altered transcription during fruiting body formation. The systematic analysis of the 25 orphan genes encoding histidine protein kinases that are transcriptionally up-regulated during development showed that 2 such genes are likely essential for viability and identified 7 histidine protein kinases, including 4 not previously characterized that have important function in fruiting body formation or spore germination
    corecore