58 research outputs found

    Transfer function fitting using a continuous Ant Colony Optimization (ACO) algorithm

    Get PDF
    An original approach is proposed in order to achieve the  fitting of ultra-wideband complex frequency functions, such  as the complex impedances, by using the so-called ACO  (Ant Colony Optimization) methods. First, we present the  optimization principle of ACO, which originally was  dedicated to the combinatorial problems. Further on, the  extension to the continuous and mixed problems is  explained in more details. The interest in this approach is  proved by its ability to define practical constraints and  objectives, such as minimizing the number of filters used in  the model with respect to a fixed relative error. Finally, the  establishment of the model for the first and second order  filter types illustrates the power of the method and its  interest for the time-domain electromagnetic computation

    FORMALISME DES CORDES POUR DES FILS GROS OBLIQUES DANS LA MÉTHODE FDTD 3D

    No full text
    The oblique thin-wire formalism of the FDTD-3D method is generalized with a theory based on the introduction of a string concept that allows the controlled extension of the coupling of a conductor in an FDTD grid over several transverse cells. The spin-offs are the modeling of conductors with large radii of the order of the cell size without significant constraints on the stability criterion, and increased accuracy of the thin-wire formalism.Le formalisme des fils minces obliques de la méthode FDTD-3D est généralisé avec une théorie basée sur l'introduction d'un concept de corde qui permet l'extension contrôlée du couplage d'un conducteur dans une grille FDTD sur plusieurs cellules transverses. Les retombées sont la modélisation de conducteurs avec des rayons gros de l'ordre de la taille de la cellule sans contrainte importante sur le critère de stabilité et une précision accrue du formalisme des fils minces

    MACHINE LEARNING POUR LA REPRESENTATION CONJOINTE DES INCERTITUDES ALEATOIRES ET EPISTEMIQUES

    No full text
    Solving electromagnetic problems requires the input of parameters that are not always precisely known. This imprecision may be due to uncertainties linked to the randomness of the problem or to a lack of information (epistemic uncertainties). We present several approaches for dealing with these two types of uncertainty in the same problem, either simultaneously or on different parameters. The dite-cut technique and polymorphic chaos polynomials in the case where one (or more) variables has both characteristics at the same time will be introduced. The representation of intervals in barycentric coordinates will enable interpolation between different interval widths. We'll also take a look at Vector Fitting in temporal processing, associated with chaos polynomials. Simple examples dealing with crosstalk between single-wire lines will illustrate these approaches.La résolution de problèmes électromagnétiques nécessite le renseignement de paramètres qui ne sont pas toujours connus avec précision. Cette imprécision peut provenir d'incertitudes liées à l'aspect aléatoire du problème ou à un manque d'informations (incertitudes épistémiques). Nous présentons plusieurs approches traitant ces deux types d'incertitudes dans un même problème dans le cas où elles interviennent simultanément ou sur des paramètres différents. La technique dite-cut et les polynômes du chaos polymorphiques dans le cas où une (ou plusieurs) variable présente les deux caractères à la fois seront ainsi introduits. La représentation d'intervalles en coordonnées barycentriques permettra l'interpolation entre différentes largeur intervalles. De même, le traitement en temporel par Vector Fitting associé aux polynômes du chaos sera évoqué. Des exemples simples traitant de la diaphonie entre lignes monofilaires illustreront ces approches

    Analytical model of a mechanically stirred reverberation chamber based on EM field modal expansion

    No full text
    International audienc

    Experimental Detection of Soft Faults on Cables Using Chaos Time-Domain Reflectometry

    No full text
    International audienceThis paper presents an improved reflectometry-based method for the detection of soft faults on RF coaxial cables using chaotic signals. This method is often referred to as chaos time-domain reflectometry (CTDR). A combination of logistic map and Bernoulli map-based chaotic signals is used for reflectometry experiments. Different types of soft faults are created, and the possible detection of these faults on RG-58 coaxial cables has been experimentally demonstrated for the first time using CTDR. The properties of chaotic signals show their potential towards detecting any kind of fault using the reflectometry method. The experimental results show the efficiency of the approach for different types of soft fault detections. Moreover, this method can be used for live cable fault monitoring with low implementation cost
    corecore