1,634 research outputs found

    Following multi-dimensional Type Ia supernova explosion models to homologous expansion

    Full text link
    The last years have witnessed a rapid development of three-dimensional models of Type Ia supernova explosions. Consequently, the next step is to evaluate these models under variation of the initial parameters and to compare them with observations. To calculate synthetic lightcurves and spectra from numerical models, it is mandatory to follow the evolution up to homologous expansion. We report on methods to achieve this in our current implementation of multi-dimensional Type Ia supernova explosion models. The novel scheme is thoroughly tested in two dimensions and a simple example of a three-dimensional simulation is presented. We discuss to what degree the assumption of homologous expansion is justified in these models.Comment: 15 pages, 16 figures, resolution of some figures reduced to meet astro-ph file size restriction, submitted to A&

    Full-star Type Ia supernova explosion models

    Full text link
    We present full-star simulations of Type Ia supernova explosions on the basis of the standard Chandrasekhar-mass deflagration model. Most simulations so far considered only one spatial octant and assumed mirror symmetry to the other octants. Two full-star models are evolved to homologous expansion and compared with previous single-octant simulations. Therefrom we analyze the effect of abolishing the artificial symmetry constraint on the evolution of the flame surface. It turns out that the development of asymmetries depends on the chosen initial flame configuration. Such asymmetries of the explosion process could possibly contribute to the observed polarization of some Type Ia supernova spectra.Comment: 11 pages, 10 figures, resolution of some figures reduced to meet astro-ph file size restriction, submitted to A&

    Nucleosynthesis in multi-dimensional SNIa explosions

    Full text link
    We present the results of nucleosynthesis calculations based on multidimensional (2D and 3D) hydrodynamical simulations of the thermonuclear burning phase in SNIa. The detailed nucleosynthetic yields of our explosion models are calculated by post-processing the ejecta, using passively advected tracer particles. The nuclear reaction network employed in computing the explosive nucleosynthesis contains 383 nuclear species. We analyzed two different choices of ignition conditions (centrally ignited, in which the spherical initial flame geometry is perturbated with toroidal rings, and bubbles, in which multi-point ignition conditions are simulated). We show that unburned C and O varies typically from ~40% to ~50% of the total ejected material.The main differences between all our models and standard 1D computations are, besides the higher mass fraction of unburned C and O, the C/O ratio (in our case is typically a factor of 2.5 higher than in 1D computations), and somewhat lower abundances of certain intermediate mass nuclei such as S, Cl, Ar, K, and Ca, and of 56Ni. Because explosive C and O burning may produce the iron-group elements and their isotopes in rather different proportions one can get different 56Ni-fractions (and thus supernova luminosities) without changing the kinetic energy of the explosion. Finally, we show that we need the high resolution multi-point ignition (bubbles) model to burn most of the material in the center (demonstrating that high resolution coupled with a large number of ignition spots is crucial to get rid of unburned material in a pure deflagration SNIa model).Comment: Accepted for A&A, 14 pages, 11 Figures, 2 Table

    Surface detonation in type Ia supernova explosions?

    Get PDF
    We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.Comment: 5 pages, 3 figures, in: Proceedings of the SciDAC 2006 Meeting, Denver June 25-26 2006, also available at http://herald.iop.org/jpcs46/m51/gbr//link/40

    The case against the progenitor's carbon-to-oxygen ratio as a source of peak luminosity variations in Type Ia supernovae

    Full text link
    One of the major challenges for theoretical modeling of Type Ia supernova explosions is to explain the diversity of these events and the empirically established correlation between their peak luminosity and light curve shape. In the framework of the so-called Chandrasekhar mass models, the progenitor's carbon-to-oxygen ratio has been suggested to be a principal source of peak luminosity variations due to a variation in the production of radioactive 56^{56}Ni during the explosion. The underlying idea is that an enhanced carbon mass fraction should result in a more vigorous explosion since here the energy release from nuclear reactions is increased. It was suspected that this would produce a higher amount of 56^{56}Ni in the ejecta. In this letter we describe a mechanism resulting from an interplay between nucleosynthesis and turbulent flame evolution which counteracts such an effect. Based on three-dimensional simulations we argue that it is nearly balanced and only minor differences in the amount of synthesized 56^{56}Ni with varying carbon mass fraction in the progenitor can be expected. Therefore this progenitor parameter is unlikely to account for the observed variations in Type Ia supernova luminosity. We discuss possible effects on the calibration of cosmological measurements.Comment: 5 pages, 4 figures, resolution of Figs. 1 and 2 is reduced, submitted to A&A Letter

    Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs

    Full text link
    In the "double-detonation sub-Chandrasekhar" model for type Ia supernovae, a carbon-oxygen (C + O) white dwarf accumulates sufficient amounts of helium such that a detonation ignites in that layer before the Chandrasekhar mass is reached. This detonation is thought to trigger a secondary detonation in the C + O core. By means of one- and two-dimensional hydrodynamic simulations, we investigate the robustness of this explosion mechanism for generic 1-M_sun models and analyze its observable predictions. Also a resolution dependence in numerical simulations is analyzed. The propagation of thermonuclear detonation fronts, both in helium and in the carbon-oxygen mixture, is computed by means of both a level-set function and a simplified description for nuclear reactions. The decision whether a secondary detonation is triggered in the white dwarf's core or not is made based on criteria given in the literature. In a parameter study involving different initial flame geometries for He-shell masses of 0.2 and 0.1 M_sun, we find that a secondary detonation ignition is a very robust process. Converging shock waves originating from the detonation in the He shell generate the conditions for a detonation near the center of the white dwarf in most of the cases considered. Finally, we follow the complete evolution of three selected models with 0.2 M_sun of He through the C/O-detonation phase and obtain nickel-masses of about 0.40 to 0.45 M_sun. Although we have not done a complete scan of the possible parameter space, our results show that sub-Chandrasekhar models are not good candidates for normal or sub-luminous type Ia supernovae. The chemical composition of the ejecta features significant amounts of nickel in the outer layers at high expansion velocities, which is inconsistent with near-maximum spectra. (abbreviated)Comment: 11 pages, 10 figures, PDFLaTeX, accepted for publication in A&

    Multi-spot ignition in type Ia supernova models

    Full text link
    We present a systematic survey of the capabilities of type Ia supernova explosion models starting from a number of flame seeds distributed around the center of the white dwarf star. To this end we greatly improved the resolution of the numerical simulations in the initial stages. This novel numerical approach facilitates a detailed study of multi-spot ignition scenarios with up to hundreds of ignition sparks. Two-dimensional simulations are shown to be inappropriate to study the effects of initial flame configurations. Based on a set of three-dimensional models, we conclude that multi-spot ignition scenarios may improve type Ia supernova models towards better agreement with observations. The achievable effect reaches a maximum at a limited number of flame ignition kernels as shown by the numerical models and corroborated by a simple dimensional analysis.Comment: 14 pages, 12 figures with reduced resolution to meet astro-ph file size restriction, full-resolution version available from http://www.mpa-garching.mpg.de/~fritz/publications/astro-ph/multispot.pdf submitted to A&

    Magnetic Communication Using High-Sensitivity Magnetic Field Detectors

    Get PDF
    In this article, an innovative approach for magnetic data communication is presented. For this purpose, the receiver coil of a conventional magneto-inductive communication system is replaced by a high-sensitivity wideband magnetic field sensor. The results show decisive advantages offered by sensitive magnetic field sensors, including a higher communication range for small receiver units. This approach supports numerous mobile applications where receiver size is limited, possibly in conjunction with multiple detectors. Numerical results are supported by a prototype implementation employing an anisotropic magneto-resistive sensor

    Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs

    Full text link
    We present photoluminescence studies of the molecular neutral biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum dot pairs. We tune either the hole or the electron levels of the two dots into tunneling resonances. The spectra are described well within a few-level, few-particle molecular model. Their properties can be modified broadly by an electric field and by structural design, which makes them highly attractive for controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments, published
    corecore