355 research outputs found

    Graphene-based active slow surface plasmon polaritons

    Get PDF
    Finding new ways to control and slow down the group velocity of light in media remains a major challenge in the field of optics. For the design of plasmonic slow light structures, graphene represents an attractive alternative to metals due to its strong field confinement, comparably low ohmic loss and versatile tunability. Here we propose a novel nanostructure consisting of a monolayer graphene on a silicon based graded grating structure. An external gate voltage is applied to graphene and silicon, which are separated by a spacer layer of silica. Theoretical and numerical results demonstrate that the structure exhibits an ultra-high slowdown factor above 450 for the propagation of surface plasmon polaritons (SPPs) excited in graphene, which also enables the spatially resolved trapping of light. Slowdown and trapping occur in the mid-infrared wavelength region within a bandwidth of similar to 2.1 mu m and on a length scale less than 1/6 of the operating wavelength. The slowdown factor can be precisely tuned simply by adjusting the external gate voltage, offering a dynamic pathway for the release of trapped SPPs at room temperature. The presented results will enable the development of highly tunable optoelectronic devices such as plasmonic switches and buffers

    Detection of paramagnetic spins with an ultrathin van der Waals quantum sensor

    Full text link
    Detecting magnetic noise from small quantities of paramagnetic spins is a powerful capability for chemical, biochemical, and medical analysis. Quantum sensors based on optically addressable spin defects in bulk semiconductors are typically employed for such purposes, but the 3D crystal structure of the sensor inhibits the sensitivity by limiting the proximity of the defects to the target spins. Here we demonstrate the detection of paramagnetic spins using spin defects hosted in hexagonal boron nitride (hBN), a van der Waals material which can be exfoliated into the 2D regime. We first create negatively charged boron vacancy (VB−_{\rm B}^-) defects in a powder of ultrathin hBN nanoflakes (<10<10~atomic monolayers thick on average) and measure the longitudinal spin relaxation time (T1T_1) of this system. We then decorate the dry hBN nanopowder with paramagnetic Gd3+^{3+} ions and observe a clear T1T_1 quenching, under ambient conditions, consistent with the added magnetic noise. Finally, we demonstrate the possibility of performing spin measurements including T1T_1 relaxometry using solution-suspended hBN nanopowder. Our results highlight the potential and versatility of the hBN quantum sensor for a range of sensing applications, and pave the way towards the realisation of a truly 2D, ultrasensitive quantum sensor.Comment: 19 pages, 11 figure

    Peroxisome Proliferator-Activated Receptor alpha (PPAR alpha) down-regulation in cystic fibrosis lymphocytes

    Get PDF
    Background: PPARs exhibit anti-inflammatory capacities and are potential modulators of the inflammatory response. We hypothesized that their expression and/or function may be altered in cystic fibrosis (CF), a disorder characterized by an excessive host inflammatory response. Methods: PPARα, β and γ mRNA levels were measured in peripheral blood cells of CF patients and healthy subjects via RT-PCR. PPARα protein expression and subcellular localization was determined via western blot and immunofluorescence, respectively. The activity of PPARα was analyzed by gel shift assay. Results: In lymphocytes, the expression of PPARα mRNA, but not of PPARβ, was reduced (-37%; p < 0.002) in CF patients compared with healthy persons and was therefore further analyzed. A similar reduction of PPARα was observed at protein level (-26%; p < 0.05). The transcription factor was mainly expressed in the cytosol of lymphocytes, with low expression in the nucleus. Moreover, DNA binding activity of the transcription factor was 36% less in lymphocytes of patients (p < 0.01). For PPARα and PPARβ mRNA expression in monocytes and neutrophils, no significant differences were observed between CF patients and healthy persons. In all cells, PPARγ mRNA levels were below the detection limit. Conclusion: Lymphocytes are important regulators of the inflammatory response by releasing cytokines and antibodies. The diminished lymphocytic expression and activity of PPARα may therefore contribute to the inflammatory processes that are observed in CF

    The effect of discrete wavelengths of visible light on the developing murine embryo

    Get PDF
    Open Access funding enabled and organized by CAUL and its Member Institutions KRD is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58–2019). KD is supported by funding from the UK Engineering and Physical Sciences Research Council (EP/P030017/1) and the Australian Research Council (FL210100099). CC acknowledges the support of a PhD scholarship jointly from the University of Adelaide and University of Nottingham. This study was funded by the Australian Research Council Centre of Excellence for Nanoscale BioPhotonics (CE140100003). PR acknowledges funding through the RMIT Vice-Chancellor’s Research Fellowship and ARC DECRA Fellowship scheme (DE200100279).Purpose A current focus of the IVF field is non-invasive imaging of the embryo to quantify developmental potential. Such approaches use varying wavelengths to gain maximum biological information. The impact of irradiating the developing embryo with discrete wavelengths of light is not fully understood. Here, we assess the impact of a range of wavelengths on the developing embryo. Methods Murine preimplantation embryos were exposed daily to wavelengths within the blue, green, yellow, and red spectral bands and compared to an unexposed control group. Development to blastocyst, DNA damage, and cell number/allocation to blastocyst cell lineages were assessed. For the longer wavelengths (yellow and red), pregnancy/fetal outcomes and the abundance of intracellular lipid were investigated. Results Significantly fewer embryos developed to the blastocyst stage when exposed to the yellow wavelength. Elevated DNA damage was observed within embryos exposed to blue, green, or red wavelengths. There was no effect on blastocyst cell number/lineage allocation for all wavelengths except red, where there was a significant decrease in total cell number. Pregnancy rate was significantly reduced when embryos were irradiated with the red wavelength. Weight at weaning was significantly higher when embryos were exposed to yellow or red wavelengths. Lipid abundance was significantly elevated following exposure to the yellow wavelength. Conclusion Our results demonstrate that the impact of light is wavelength-specific, with longer wavelengths also impacting the embryo. We also show that effects are energy-dependent. This data shows that damage is multifaceted and developmental rate alone may not fully reflect the impact of light exposure.Publisher PDFPeer reviewe

    Multi-species optically addressable spin defects in a van der Waals material

    Full text link
    Optically addressable spin defects hosted in two-dimensional van der Waals materials represent a new frontier for quantum technologies, promising to lead to a new class of ultrathin quantum sensors and simulators. Recently, hexagonal boron nitride (hBN) has been shown to host several types of optically addressable spin defects, thus offering a unique opportunity to simultaneously address and utilise various spin species in a single material. Here we demonstrate an interplay between two separate spin species within a single hBN crystal, namely S=1S=1 boron vacancy defects and visible emitter spins. We unambiguously prove that the visible emitters are S=12S=\frac{1}{2} spins and further demonstrate room temperature coherent control and optical readout of both spin species. Importantly, by tuning the two spin species into resonance with each other, we observe cross-relaxation indicating strong inter-species dipolar coupling. We then demonstrate magnetic imaging using the S=12S=\frac{1}{2} defects, both under ambient and cryogenic conditions, and leverage their lack of intrinsic quantization axis to determine the anisotropic magnetic susceptibility of a test sample. Our results establish hBN as a versatile platform for quantum technologies in a van der Waals host at room temperature

    Fano resonances in plasmonic core-shell particles and the Purcell effect

    Full text link
    Despite a long history, light scattering by particles with size comparable with the light wavelength still unveils surprising optical phenomena, and many of them are related to the Fano effect. Originally described in the context of atomic physics, the Fano resonance in light scattering arises from the interference between a narrow subradiant mode and a spectrally broad radiation line. Here, we present an overview of Fano resonances in coated spherical scatterers within the framework of the Lorenz-Mie theory. We briefly introduce the concept of conventional and unconventional Fano resonances in light scattering. These resonances are associated with the interference between electromagnetic modes excited in the particle with different or the same multipole moment, respectively. In addition, we investigate the modification of the spontaneous-emission rate of an optical emitter at the presence of a plasmonic nanoshell. This modification of decay rate due to electromagnetic environment is referred to as the Purcell effect. We analytically show that the Purcell factor related to a dipole emitter oriented orthogonal or tangential to the spherical surface can exhibit Fano or Lorentzian line shapes in the near field, respectively.Comment: 28 pages, 10 figures; invited book chapter to appear in "Fano Resonances in Optics and Microwaves: Physics and Application", Springer Series in Optical Sciences (2018), edited by E. O. Kamenetskii, A. Sadreev, and A. Miroshnichenk
    • …
    corecore