96 research outputs found

    Synthesis of Subject-Specific Human Balance Responses using a Task-Level Neuromuscular Control Platform

    Get PDF
    Many activities of daily living require a high level of neuromuscular coordination and balance control to avoid falls. Complex musculoskeletal models paired with detailed neuromuscular simulations complement experimental studies and uncover principles of coordinated and uncoordinated movements. Here, we created a closed-loop forward dynamic simulation framework that utilizes a detailed musculoskeletal model (19 degrees of freedom, and 92 Muscles) to synthesize human balance responses after support-surface perturbation. In addition, surrogate response models of task-level experimental kinematics from two healthy subjects were provided as inputs to our closedloop simulations to inform the design of the task-level controller. The predicted muscle EMGs and the resulting synthesized subject joint angles showed good conformity with the average of experimental trials. The simulated whole-body center of mass displacements, generated from a single kinematics trial per perturbation direction, were on average, within 7 mm (anterior perturbations) and 13 mm (posterior perturbations) of experimental displacements. Our results confirmed how a complex subject-specific movement can be reconstructed by sequencing and prioritizing multiple task-level commands to achieve desired movements. By combining the multidisciplinary approaches of robotics and biomechanics, the platform demonstrated here offers great potential for studying human movement control and subject-specific outcome prediction

    Primary structure and location of the genome-linked protein (VPg) of grapevine fanleaf nepovirus

    Get PDF
    AbstractThe genome linked protein VPg covalently linked to the RNAs of grapevine fanleaf nepovirus has been sequenced. The VPg (Mr=2931) composed of 24 residues is linked by its N-terminal Ser β-OH group to the viral RNAs. The VPg mapped from residues 1218 to 1241 of the 253K polyprotein encoded by GFLV RNA1

    Selection of tRNA(Asp) amber suppressor mutants having alanine, arginine, glutamine, and lysine identity.

    No full text
    Elements that confer identity to a tRNA in the cellular environment, where all aminoacyl-tRNA synthetases are competing for substrates, may be delineated by in vivo experiments using suppressor tRNAs. Here we describe the selection of active Escherichia coli tRNAAsp amber mutants and analyze their identity. Starting from a library containing randomly mutated tRNA(CUA)Asp genes, we isolated four amber suppressors presenting either lysine, alanine, or glutamine activity. Two of them, presenting mainly alanine or lysine activity, were further submitted to a second round of mutagenesis selection in order to improve their efficiency of suppression. Eleven suppressors were isolated, each containing two or three mutations. Ten presented identities of the two parental mutants, whereas one had switched from lysine to arginine identity. Analysis of the different mutants revealed (or confirmed for some nucleotides) their role as positive and/or negative determinants in AlaRS, LysRS, and ArgRS recognition. More generally, it appears that tRNAAsp presents identity characteristics closely related to those of tRNALys, as well as a structural basis for acquiring alanine or arginine identity upon moderate mutational changes; these consist of addition or suppression of the corresponding positive or negative determinants, as well as tertiary interactions. Failure to isolate aspartic acid-inserting suppressors is probably due to elimination of the important G34 identity element and its replacement by an antideterminant when changing the anticodon of the tRNAAsp to the CUA triplet

    Goal-Oriented Optimization of Dynamic Simulations to Find a Balance between Performance Enhancement and Injury Prevention during Volleyball Spiking

    No full text
    Performance enhancement and injury prevention are often perceived as opposite sides of a coin, where focusing on improvements of one leads to detriment of the other. In this study, we used physics-based simulations with novel optimization methods to find participant-specific, whole-body mechanics of volleyball spiking that enhances performance (the peak height of the hitting hand and its forward velocity) while minimizing injury risk. For the volleyball spiking motion, the shoulder is the most common injury site because of the high mechanical loads that are most pronounced during the follow-through phase of the movement. We analyzed 104 and 209 spiking trials across 13 participants for the power and follow-through phases, respectively. During the power phase, simulations increased (p < 0.025) the peak height of the hitting wrist by 1% and increased (p < 0.025) the forward wrist velocity by 25%, without increasing peak shoulder joint torques, by increasing the lower-limb forward swing (i.e., hip flexion, knee extension). During the follow-through phase, simulations decreased (p < 0.025) peak shoulder joint torques by 75% elicited by synergistic rotation of the trunk along the pathway of the hitting arm. Our results show that performance enhancement and injury prevention are not mutually exclusive and may both be improved simultaneously, potentially leading to better-performing and injury-free athletes
    • …
    corecore