1,469 research outputs found

    Global existence and asymptotic behaviour in the future for the Einstein-Vlasov system with positive cosmological constant

    Full text link
    The behaviour of expanding cosmological models with collisionless matter and a positive cosmological constant is analysed. It is shown that under the assumption of plane or hyperbolic symmetry the area radius goes to infinity, the spacetimes are future geodesically complete, and the expansion becomes isotropic and exponential at late times. This proves a form of the cosmic no hair theorem in this class of spacetimes

    A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein-Vlasov system

    Full text link
    The stability features of steady states of the spherically symmetric Einstein-Vlasov system are investigated numerically. We find support for the conjecture by Zeldovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.Comment: 29 pages, 10 figure

    Static cylindrically symmetric spacetimes

    Full text link
    We prove existence of static solutions to the cylindrically symmetric Einstein-Vlasov system, and we show that the matter cylinder has finite extension. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered in \cite{BL}. We also obtain this result for the Vlasov-Poisson system.Comment: Added acknowledgemen

    Sampling rare switching events in biochemical networks

    Full text link
    Bistable biochemical switches are ubiquitous in gene regulatory networks and signal transduction pathways. Their switching dynamics, however, are difficult to study directly in experiments or conventional computer simulations, because switching events are rapid, yet infrequent. We present a simulation technique that makes it possible to predict the rate and mechanism of flipping of biochemical switches. The method uses a series of interfaces in phase space between the two stable steady states of the switch to generate transition trajectories in a ratchet-like manner. We demonstrate its use by calculating the spontaneous flipping rate of a symmetric model of a genetic switch consisting of two mutually repressing genes. The rate constant can be obtained orders of magnitude more efficiently than using brute-force simulations. For this model switch, we show that the switching mechanism, and consequently the switching rate, depends crucially on whether the binding of one regulatory protein to the DNA excludes the binding of the other one. Our technique could also be used to study rare events and non-equilibrium processes in soft condensed matter systems.Comment: 9 pages, 6 figures, last page contains supplementary informatio

    Scanning reflectance spectroscopy (380-730nm): a novel method for quantitative high-resolution climate reconstructions from minerogenic lake sediments

    Get PDF
    High-resolution (annual to sub-decadal) quantitative reconstructions of climate variables are needed from a variety of paleoclimate archives across the world to place current climate change in the context of long-term natural climate variability. Rapid, high-resolution, non-destructive scanning techniques are required to produce such high-resolution records from lake sediments. In this study we explored the potential of scanning reflectance spectroscopy (VIS-RS; 380-730nm) to produce quantitative summer temperature reconstructions from minerogenic sediments of proglacial, annually laminated Lake Silvaplana, in the eastern Swiss Alps. The scanning resolution was 2mm, which corresponded to sediment deposition over 1-2years. We found correlations up to r=0.84 (p<0.05) for the calibration period 1864-1950, between six reflectance-dependent variables and summer (JJAS) temperature. These reflectance-dependent variables (e.g. slope of the reflectance 570/630nm, indicative of illite, biotite and chlorite; minimum reflectance at 690nm indicative of chlorite) indicate the mineralogical composition of the clastic sediments, which is, in turn, related to climate in the catchment of this particular proglacial lake. We used multiple linear regression (MLR) to establish a calibration model that explains 84% of the variance of summer (JJAS) temperature during the calibration period 1864-1950. We then applied the calibration model downcore to develop a quantitative summer temperature reconstruction extending back to AD 1177. This temperature reconstruction is in good agreement with two independent temperature reconstructions based on documentary data that extend back to AD 1500 and tree ring data that extend back to AD 1177. This study confirms the great potential of in situ scanning reflectance spectroscopy as a novel non-destructive technique to rapidly acquire high-resolution quantitative paleoclimate information from minerogenic lake sediment

    The Einstein-Vlasov sytem/Kinetic theory

    Get PDF
    The main purpose of this article is to guide the reader to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades where the main focus has been on nonrelativistic- and special relativistic physics, e.g. to model the dynamics of neutral gases, plasmas and Newtonian self-gravitating systems. In 1990 Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (e.g. fluid models). The first part of this paper gives an introduction to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental in order to get a good comprehension of kinetic theory in general relativity.Comment: 31 pages. This article has been submitted to Living Rev. Relativity (http://www.livingreviews.org

    Rare switching events in non-stationary systems

    Full text link
    Physical systems with many degrees of freedom can often be understood in terms of transitions between a small number of metastable states. For time-homogeneous systems with short-term memory these transitions are fully characterized by a set of rate constants. We consider the question how to extend such a coarse-grained description to non-stationary systems and to systems with finite memory. We identify the physical regimes in which time-dependent rates are meaningful, and state microscopic expressions that can be used to measure both externally time-dependent and history-dependent rates in microscopic simulations.Comment: 14 pages, 8 figure

    Resonance reactions and enhancement of weak interactions in collisions of cold molecules

    Full text link
    With the creation of ultracold atoms and molecules, a new type of chemistry - "resonance" chemistry - emerges: chemical reactions can occur when the energy of colliding atoms and molecules matches a bound state of the combined molecule (Feshbach resonance). This chemistry is rather similar to reactions that take place in nuclei at low energies. In this paper we suggest some problems for future experimental and theoretical work related to the resonance chemistry of ultracold molecules. Molecular Bose-Einstein condensates are particularly interesting because in this system collisions and chemical reactions are extremely sensitive to weak fields; also, a preferred reaction channel may be enhanced due to a finite number of final states. The sensitivity to weak fields arises due to the high density of narrow compound resonances and the macroscopic number of molecules with kinetic energy E=0 (in the ground state of a mean-field potential). The high sensitivity to the magnetic field may be used to measure the distribution of energy intervals, widths, and magnetic moments of compound resonances and study the onset of quantum chaos. A difference in the production rate of right-handed and left-handed chiral molecules may be produced by external electric and magnetic fields and the finite width of the resonance. The same effect may be produced by the parity-violating energy difference in chiral molecules.Comment: 5 pages. Included discussion of expected size of effect

    Fuchsian methods and spacetime singularities

    Full text link
    Fuchsian methods and their applications to the study of the structure of spacetime singularities are surveyed. The existence question for spacetimes with compact Cauchy horizons is discussed. After some basic facts concerning Fuchsian equations have been recalled, various ways in which these equations have been applied in general relativity are described. Possible future applications are indicated
    • 

    corecore