23 research outputs found

    Dispersion of elastic waves in laminated glass

    Get PDF
    Elastic sandwich-type structures with high-contrast material and geometrical properties have numerous applications in modern engineering, including, in particular, laminated glass, photovoltaic panels, precipitator plates in gas filters, etc. Multi-parametric modelling of such structures assumes taking into consideration various types of contrast in stiffness, density and thickness. The present contribution is concerned with analysis of low-frequency dispersion of elastic waves in case of an antisymmetric motion of a three-layered symmetric plate, modelling laminated glass. The conditions on material and geometrical parameters, leading to the lowest non-zero thickness shear resonance frequency tending to zero, are formulated. In this case the dispersion relation possesses two low-frequency modes instead of a single fundamental low-frequency mode, which is typical for a homogeneous plate. A two-mode uniform asymptotic approximation is constructed, along with local approximations for the fundamental mode and the first shear harmonic

    Metagenomics: The Next Culture-Independent Game Changer

    Get PDF
    A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs) including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other ‘omics’ disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of metagenomics and comparable detection techniques in clinical microbiology, food and public health laboratories. Early advances in the discipline of metagenomics, however, have indicated noteworthy challenges. Through forthcoming improvements in sequencing technology and analytical pipelines among others, we anticipate that within the next decade, detection and characterization of pathogens via metagenomics-based workflows will be implemented in routine usage in diagnostic and public health laboratories

    Shared genome analyses of notable listeriosis outbreaks, highlighting the critical importance of epidemiological evidence, input datasets and interpretation criteria

    Get PDF
    The persuasiveness of genomic evidence has pressured scientific agencies to supplement or replace well-established methodologies to inform public health and food safety decision-making. This study of 52 epidemiologically defined Listeria monocytogenes isolates, collected between 1981 and 2011, including nine outbreaks, was undertaken (1) to characterize their phylogenetic relationship at finished genome-level resolution, (2) to elucidate the underlying genetic diversity within an endemic subtype, CC8, and (3) to re-evaluate the genetic relationship and epidemiology of a CC8-delimited outbreak in Canada in 2008. Genomes representing Canadian Listeria outbreaks between 1981 and 2010 were closed and manually annotated. Single nucleotide variants (SNVs) and horizontally acquired traits were used to generate phylogenomic models. Phylogenomic relationships were congruent with classical subtyping and epidemiology, except for CC8 outbreaks, wherein the distribution of SNV and prophages revealed multiple co-evolving lineages. Chronophyletic reconstruction of CC8 evolution indicates that prophage-related genetic changes among CC8 strains manifest as PFGE subtype reversions, obscuring the relationship between CC8 isolates, and complicating the public health interpretation of subtyping data, even at maximum genome resolution. The size of the shared genome interrogated did not change the genetic relationship measured between highly related isolates near the tips of the phylogenetic tree, illustrating the robustness of these approaches for routine public health applications where the focus is recent ancestry. The possibility exists for temporally and epidemiologically distinct events to appear related even at maximum genome resolution, highlighting the continued importance of epidemiological evidence

    Gardnerella vaginalis Bacteremia in a Previously Healthy Man: Case Report and Characterization of the Isolateâ–¿

    No full text
    Gardnerella vaginalis in women causes vaginitis or infections in other sites, such as the urinary tract, but is an infrequent cause of bacteremia. Bacteremia in men is very rare and is typically associated with immunocompromised states. Here we describe G. vaginalis bacteremia in a previously healthy man with renal calculi and urosepsis

    Tolerance of Listeria monocytogenes to Quaternary Ammonium Sanitizers Is Mediated by a Novel Efflux Pump Encoded by emrE

    No full text
    A novel genomic island (LGI1) was discovered in Listeria monocytogenes isolates responsible for the deadliest listeriosis outbreak in Canada, in 2008. To investigate the functional role of LGI1, the outbreak strain 08-5578 was exposed to food chain-relevant stresses, and the expression of 16 LGI1 genes was measured. LGI1 genes with putative efflux (L. monocytogenes emrE [emrELm]), regulatory (lmo1851), and adhesion (sel1) functions were deleted, and the mutants were exposed to acid (HCl), cold (4°C), salt (10 to 20% NaCl), and quaternary ammonium-based sanitizers (QACs). Deletion of lmo1851 had no effect on the L. monocytogenes stress response, and deletion of sel1 did not influence Caco-2 and HeLa cell adherence/invasion, whereas deletion of emrE resulted in increased susceptibility to QACs (P < 0.05) but had no effect on the MICs of gentamicin, chloramphenicol, ciprofloxacin, erythromycin, tetracycline, acriflavine, and triclosan. In the presence of the QAC benzalkonium chloride (BAC; 5 μg/ml), 14/16 LGI1 genes were induced, and lmo1861 (putative repressor gene) was constitutively expressed at 4 °C, 37 °C, and 52 °C and in the presence of UV exposure (0 to 30 min). Following 1 h of exposure to BAC (10 μg/ml), upregulation of emrE (49.6-fold), lmo1851 (2.3-fold), lmo1861 (82.4-fold), and sigB (4.1-fold) occurred. Reserpine visibly suppressed the growth of the ΔemrELm strain, indicating that QAC tolerance is due at least partially to efflux activity. These data suggest that a minimal function of LGI1 is to increase the tolerance of L. monocytogenes to QACs via emrELm. Since QACs are commonly used in the food industry, there is a concern that L. monocytogenes strains possessing emrE will have an increased ability to survive this stress and thus to persist in food processing environments

    Legionella jordanis Lower Respiratory Tract Infection: Case Report and Reviewâ–¿

    No full text
    Legionella jordanis was first described in 1982 after isolation from environmental sources and is otherwise a very rare human pathogen. Here, we report the recovery of L. jordanis from a bronchoalveolar lavage specimen from a patient who presented with an indolent lower respiratory tract infection associated with constitutional symptoms. This case is the first culture-positive case of infection involving this species in Canada

    Sequence typing confirms that a predominant Listeria monocytogenes clone caused human listeriosis cases and outbreaks in Canada from 1988 to 2010

    No full text
    Human listeriosis outbreaks in Canada have been predominantly caused by serotype 1/2a isolates with highly similar pulsedfield gel electrophoresis (PFGE) patterns. Multilocus sequence typing (MLST) and multi-virulence-locus sequence typing (MVLST) each identified a diverse population of Listeria monocytogenes isolates, and within that, both methods had congruent subtypes that substantiated a predominant clone (clonal complex 8; virulence type 59; proposed epidemic clone 5 [ECV]) that has been causing human illness across Canada for more than 2 decades

    Drug-Resistance Mechanisms in Vibrio cholerae O1 Outbreak Strain, Haiti, 2010

    No full text
    To increase understanding of drug-resistant Vibrio cholerae, we studied selected molecular mechanisms of antimicrobial drug resistance in the 2010 Haiti V. cholerae outbreak strain. Most resistance resulted from acquired genes located on an integrating conjugative element showing high homology to an integrating conjugative element identified in a V. cholerae isolate from India

    Drug-Resistance Mechanisms in Vibrio Cholerae O1outbreak strain, Haiti, 2010

    No full text
    To increase understanding of drug-resistant Vibrio cholerae, we studied selected molecular mechanisms of antimicrobial drug resistance in the 2010 Haiti V. cholerae outbreak strain. Most resistance resulted from acquired genes located on an integrating conjugative element showing high homology to an integrating conjugative element identified in a V. cholerae isolate from India
    corecore