310 research outputs found

    Evolution of electronic and ionic structure of Mg-clusters with the growth cluster size

    Get PDF
    The optimized structure and electronic properties of neutral and singly charged magnesium clusters have been investigated using ab initio theoretical methods based on density-functional theory and systematic post-Hartree-Fock many-body perturbation theory accounting for all electrons in the system. We have systematically calculated the optimized geometries of neutral and singly charged magnesium clusters consisting of up to 21 atoms, electronic shell closures, binding energies per atom, ionization potentials and the gap between the highest occupied and the lowest unoccupied molecular orbitals. We have investigated the transition to the hcp structure and metallic evolution of the magnesium clusters, as well as the stability of linear chains and rings of magnesium atoms. The results obtained are compared with the available experimental data and the results of other theoretical works.Comment: 30 pages, 10 figures, 3 table

    SYNCA: A Synthetic Cyclotron Antenna for the Project 8 Collaboration

    Get PDF
    Cyclotron Radiation Emission Spectroscopy (CRES) is a technique for measuring the kinetic energy of charged particles through a precision measurement of the frequency of the cyclotron radiation generated by the particle\u27s motion in a magnetic field. The Project 8 collaboration is developing a next-generation neutrino mass measurement experiment based on CRES. One approach is to use a phased antenna array, which surrounds a volume of tritium gas, to detect and measure the cyclotron radiation of the resulting β-decay electrons. To validate the feasibility of this method, Project 8 has designed a test stand to benchmark the performance of an antenna array at reconstructing signals that mimic those of genuine CRES events. To generate synthetic CRES events, a novel probe antenna has been developed, which emits radiation with characteristics similar to the cyclotron radiation produced by charged particles in magnetic fields. This paper outlines the design, construction, and characterization of this Synthetic Cyclotron Antenna (SYNCA). Furthermore, we perform a series of measurements that use the SYNCA to test the position reconstruction capabilities of the digital beamforming reconstruction technique. We find that the SYNCA produces radiation with characteristics closely matching those expected for cyclotron radiation and reproduces experimentally the phenomenology of digital beamforming simulations of true CRES signals

    Viterbi decoding of CRES signals in Project 8

    Get PDF
    Cyclotron radiation emission spectroscopy (CRES) is a modern approach for determining charged particle energies via high-precision frequency measurements of the emitted cyclotron radiation. For CRES experiments with gas within the fiducial volume, signal and noise dynamics can be modelled by a hidden Markov model. We introduce a novel application of the Viterbi algorithm in order to derive informational limits on the optimal detection of cyclotron radiation signals in this class of gas-filled CRES experiments, thereby providing concrete limits from which future reconstruction algorithms, as well as detector designs, can be constrained. The validity of the resultant decision rules is confirmed using both Monte Carlo and Project 8 data

    The Low-Temperature Fate of the 0.7 Structure in a Point Contact: A Kondo-like Correlated State in an Open System

    Full text link
    Besides the usual conductance plateaus at multiples of 2e2/h, quantum point contacts typically show an extra plateau at ~ 0.7(2e2/h), believed to arise from electron-electron interactions that prohibit the two spin channels from being simultaneously occupied. We present evidence that the disappearance of the 0.7 structure at very low temperature signals the formation of a Kondo-like correlated spin state. Evidence includes a zero-bias conductance peak that splits in a parallel field, scaling of conductance to a modified Kondo form, and consistency between peak width and the Kondo temperature

    Stromal Interferon-γ Signaling and Cross-Presentation Are Required to Eliminate Antigen-Loss Variants of B Cell Lymphomas in Mice

    Get PDF
    To study mechanisms of T cell-mediated rejection of B cell lymphomas, we developed a murine lymphoma model wherein three potential rejection antigens, human c-MYC, chicken ovalbumin (OVA), and GFP are expressed. After transfer into wild-type mice 60–70% of systemically growing lymphomas expressing all three antigens were rejected; lymphomas expressing only human c-MYC protein were not rejected. OVA expressing lymphomas were infiltrated by T cells, showed MHC class I and II upregulation, and lost antigen expression, indicating immune escape. In contrast to wild-type recipients, 80–100% of STAT1-, IFN-γ-, or IFN-γ receptor-deficient recipients died of lymphoma, indicating that host IFN-γ signaling is critical for rejection. Lymphomas arising in IFN-γ- and IFN-γ-receptor-deficient mice had invariably lost antigen expression, suggesting that poor overall survival of these recipients was due to inefficient elimination of antigen-negative lymphoma variants. Antigen-dependent eradication of lymphoma cells in wild-type animals was dependent on cross-presentation of antigen by cells of the tumor stroma. These findings provide first evidence for an important role of the tumor stroma in T cell-mediated control of hematologic neoplasias and highlight the importance of incorporating stroma-targeting strategies into future immunotherapeutic approaches

    Tritium Beta Spectrum and Neutrino Mass Limit from Cyclotron Radiation Emission Spectroscopy

    Get PDF
    The absolute scale of the neutrino mass plays a critical role in physics at every scale, from the particle to cosmological. Measurements of the tritium endpoint spectrum have provided the most precise direct limit on the neutrino mass scale. In this Letter, we present advances by Project 8 to the Cyclotron Radiation Emission Spectroscopy (CRES) technique culminating in the first frequency-based neutrino mass limit. With only a cm3^3-scale physical detection volume, a limit of mβm_\beta<180 eV is extracted from the background-free measurement of the continuous tritium beta spectrum. Using 83m^{83{\rm m}}Kr calibration data, an improved resolution of 1.66±\pm0.16 eV (FWHM) is measured, the detector response model is validated, and the efficiency is characterized over the multi-keV tritium analysis window. These measurements establish the potential of CRES for a high-sensitivity next-generation direct neutrino mass experiment featuring low background and high resolution.Comment: 7 pages, 5 figures, for submission to PR

    A View from the Top: International Politics, Norms and the Worldwide Growth of NGOs

    Get PDF
    This article provides a top-down explanation for the rapid growth of nongovernmental organizations (NGOs) in the postwar period, focusing on two aspects of political globalization. First, I argue that international political opportunities in the form of funding and political access have expanded enormously in the postwar period and provided a structural environment highly conducive to NGO growth. Secondly, I present a norm-based argument and trace the rise of a pro-NGO norm in the 1980s and 1990s among donor states and intergovernmental organizations (IGOs), which has actively promoted the spread of NGOs to non-Western countries. The article ends with a brief discussion of the symbiotic relationship among NGOs, IGOs, and states promoting international cooperation

    A Membrane-Bound Vertebrate Globin

    Get PDF
    The family of vertebrate globins includes hemoglobin, myoglobin, and other O2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O2 binding with a variable affinity (P50∼1.3–12.5 torr), depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein

    Severe congenital neutropenia in a multigenerational family with a novel neutrophil elastase (ELANE) mutation

    Get PDF
    We have analysed a family with nine congenital neutropenia patients in four generations, several of which we have studied in a long-term follow-up of over 25 years. The patients were mild to severe neutropenic and suffered from various recurrent bacterial infections. Mutations in the genes ELANE, CSF3R and GFI1 have been reported in patients with autosomal dominant congenital neutropenias. Using a small-scale linkage analysis with markers around the ELANE, CSF3R, CSF3 and GFI1 genes, we were able to determine that the disease segregated with markers around the ELANE gene. We identified a novel mutation in the ELANE gene in all of the affected family members that was not present in any of the healthy family members. The mutation leads to an A28S missense mutation in the mature protein. None of these patients developed leukaemia. This is the first truly multigenerational family with mutations in ELANE as unambiguous cause of severe congenital neutropenia SCN

    Global Norms, Local Activism, and Social Movement Outcomes: Global Human Rights and Resident Koreans in Japan

    Get PDF
    The authors integrate social movement outcomes research and the world society approach to build a theoretical model to examine the impact of global and local factors on movement outcomes. Challenging the current research on policy change, which rarely examines the effects of global norms and local activism in one analysis, they argue (1) that global regimes empower and embolden local social movements and increase pressure on target governments from below, and (2) that local activists appeal to international forums with help from international activists to pressure the governments from above. When the pressures from the top and the bottom converge, social movements are more likely to succeed. Furthermore, these pressures are stronger in countries integrated into global society and on issues with strong global norms. The empirical analysis of social movements by resident Koreans in Japan advocating for four types of human rights—civil, political, social/economic, and cultural—demonstrates that the movements produced more successes as Japan\u27s involvement in the international human rights regime expanded since the late 1970s, and that activism on issues with strong global norms achieved greater successes. The analysis also shows that lack of cohesive domestic activism can undercut the chances of social movements\u27 success even with strong global norms on the issue
    corecore