3,569 research outputs found

    Rolling and sliding of a nanorod between two planes: Tribological regimes and control of friction

    Full text link
    The motion of a cylindrical crystalline nanoparticle sandwiched between two crystalline planes, one stationary and the other pulled at a constant velocity and pressed down by a normal load, is considered theoretically using a planar model. The results of our model calculations show that, depending on load and velocity, the nanoparticle can be either rolling or sliding. At sufficiently high normal loads, several sliding states characterized by different friction forces can coexist, corresponding to different orientations of the nanoparticle, and allowing one to have low or high friction at the same pulling velocity and normal load.Comment: 5 figure

    Rotating binary Bose-Einstein condensates and vortex clusters in quantum droplets

    Full text link
    Quantum droplets may form out of a gaseous Bose-Einstein condensate, stabilized by quantum fluctuations beyond mean field. We show that multiple singly-quantized vortices may form in these droplets at moderate angular momenta in two dimensions. Droplets carrying these precursors of an Abrikosov lattice remain self-bound for certain timescales after switching off an initial harmonic confinement. Furthermore, we examine how these vortex-carrying droplets can be formed in a more pertubation-resistant setting, by starting from a rotating binary Bose-Einstein condensate and inducing a metastable persistent current via a non-monotonic trapping potential.Comment: 5 page, 4 figure

    Phase diagram of a rapidly-rotating two-component Bose gas

    Full text link
    We derive analytically the phase diagram of a two-component Bose gas confined in an anharmonic potential, which becomes exact and universal in the limit of weak interactions and small anharmonicity of the trapping potential. The transitions between the different phases, which consist of vortex states of single and multiple quantization, are all continuous because of the addition of the second component.Comment: 5 pages, 3 figure

    Rotational properties of non-dipolar and dipolar Bose-Einstein condensates confined in annular potentials

    Full text link
    We investigate the rotational response of both non-dipolar and dipolar Bose-Einstein condensates confined in an annular potential. For the non-dipolar case we identify certain critical rotational frequencies associated with the formation of vortices. For the dipolar case, assuming that the dipoles are aligned along some arbitrary and tunable direction, we study the same problem as a function of the orientation angle of the dipole moment of the atoms.Comment: 5 pages, 4 figure

    Finite-size effects in the dynamics of few bosons in a ring potential

    Full text link
    We study the temporal evolution of a small number NN of ultra-cold bosonic atoms confined in a ring potential. Assuming that initially the system is in a solitary-wave solution of the corresponding mean-field problem, we identify significant differences in the time evolution of the density distribution of the atoms when it instead is evaluated with the many-body Schr\"odinger equation. Three characteristic timescales are derived: the first is the period of rotation of the wave around the ring, the second is associated with a "decay" of the density variation, and the third is associated with periodic "collapses" and "revivals" of the density variations, with a factor of N\sqrt N separating each of them. The last two timescales tend to infinity in the appropriate limit of large NN, in agreement with the mean-field approximation. These findings are based on the assumption of the initial state being a mean-field state. We confirm this behavior by comparison to the exact solutions for a few-body system stirred by an external potential. We find that the exact solutions of the driven system exhibit similar dynamical features.Comment: To appear in Journal of Physics

    Hexagons become second if symmetry is broken

    Get PDF
    Pattern formation on the free surface of a magnetic fluid subjected to a magnetic field is investigated experimentally. By tilting the magnetic field the symmetry can be broken in a controllable manner. When increasing the amplitude of the tilted field, the flat surface gives way to liquid ridges. A further increase results in a hysteretic transition to a pattern of stretched hexagons. The instabilities are detected by means of a linear array of magnetic hall sensors and compared with theoretical predictions.Comment: accepted for publication by Physical Review E/Rapid Communicatio

    Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes

    Full text link
    We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian processes having the first moment of the waiting time distributions, we get qualitatively the same results as in the Markovian case. However, for distributions without the first moment, the mean first passage time curves do not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the resonant activation fails for fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted as a brief report to Phys. Rev.

    Slice Stretching at the Event Horizon when Geodesically Slicing the Schwarzschild Spacetime with Excision

    Get PDF
    Slice-stretching effects are discussed as they arise at the event horizon when geodesically slicing the extended Schwarzschild black-hole spacetime while using singularity excision. In particular, for Novikov and isotropic spatial coordinates the outward movement of the event horizon (``slice sucking'') and the unbounded growth there of the radial metric component (``slice wrapping'') are analyzed. For the overall slice stretching, very similar late time behavior is found when comparing with maximal slicing. Thus, the intuitive argument that attributes slice stretching to singularity avoidance is incorrect.Comment: 5 pages, 2 figures, published version including minor amendments suggested by the refere

    Spin-orbit-coupled Bose-Einstein-condensed atoms confined in annular potentials

    Full text link
    A spin-orbit-coupled Bose-Einstein-condensed cloud of atoms confined in an annular trapping potential shows a variety of phases that we investigate in the present study. Starting with the non-interacting problem, the homogeneous phase that is present in an untrapped system is replaced by a sinusoidal density variation in the limit of a very narrow annulus. In the case of an untrapped system there is another phase with a striped-like density distribution, and its counterpart is also found in the limit of a very narrow annulus. As the width of the annulus increases, this picture persists qualitatively. Depending on the relative strength between the inter- and the intra-components, interactions either favor the striped phase, or suppress it, in which case either a homogeneous, or a sinusoidal-like phase appears. Interactions also give rise to novel solutions with a nonzero circulation.Comment: Final, slightly revised versio

    Fluid pumped by magnetic stress

    Full text link
    A magnetic field rotating on the free surface of a ferrofluid layer is shown to induce considerable fluid motion toward the direction the field is rolling. The measured flow velocity i) increases with the square of the magnetic field amplitude, ii) is proportional to the thickness of the fluid layer, and iii) has a maximum at a driving frequency of about 3 kHz. The pumping speed can be estimated with a two-dimensional flow model.Comment: 3 pages, 4 figure
    • …
    corecore