7,164 research outputs found

    Study of non-interactive computer methods for microcircuit layout

    Get PDF

    Fast Single-Charge Sensing with an rf Quantum Point Contact

    Full text link
    We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2) with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back-action is rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed

    Objective measurement of habitual sedentary behavior in pre-school children: comparison of activPAL with actigraph monitors

    Get PDF
    The Actigraph is well established for measurement of both physical activity and sedentary behavior in children. The activPAL is being used increasingly in children, though with no published evidence on its use in free-living children to date. The present study compared the two monitors in preschool children. Children (n 23) wore both monitors simultaneously during waking hours for 5.6d and 10h/d. Daily mean percentage of time sedentary (nontranslocation of the trunk) was 74.6 (SD 6.8) for the Actigraph and 78.9 (SD 4.3) for activPAL. Daily mean percentage of time physically active (light intensity physical activity plus MVPA) was 25.4 (SD 6.8) for the Actigraph and 21.1 (SD 4.3) for the activPAL. Bland-Altman tests and paired t tests suggested small but statistically significant differences between the two monitors. Actigraph and activPAL estimates of sedentary behaviour and physical activity in young children are similar at a group level

    Rapid Single-Shot Measurement of a Singlet-Triplet Qubit

    Get PDF
    We report repeated single-shot measurements of the two-electron spin state in a GaAs double quantum dot. The readout scheme allows measurement with fidelity above 90% with a 7 microsecond cycle time. Hyperfine-induced precession between singlet and triplet states of the two-electron system are directly observed, as nuclear Overhauser fields are quasi-static on the time scale of the measurement cycle. Repeated measurements on millisecond to second time scales reveal evolution of the nuclear environment.Comment: supplemental material at http://marcuslab.harvard.edu/papers/single_shot_sup.pd

    Local origins impart conserved bone type-related differences in human osteoblast behaviour

    Get PDF
    Osteogenic behaviour of osteoblasts from trabecular, cortical and subchondral bone were examined to determine any bone type-selective differences in samples from both osteoarthritic (OA) and osteoporotic (OP) patients. Cell growth, differentiation; alkaline phosphatase (TNAP) mRNA and activity, Runt-related transcription factor-2 (RUNX2), SP7-transcription factor (SP7), bone sialoprotein-II (BSP-II), osteocalcin/bone gamma-carboxyglutamate (BGLAP), osteoprotegerin (OPG, TNFRSF11B), receptor activator of nuclear factor-κβ ligand (RANKL, TNFSF11) mRNA levels and proangiogenic vascular endothelial growth factor-A (VEGF-A) mRNA and protein release were assessed in osteoblasts from paired humeral head samples from age-matched, human OA/OP (n = 5/4) patients. Initial outgrowth and increase in cell number were significantly faster (p < 0.01) in subchondral and cortical than trabecular osteoblasts, in OA and OP, and this bone type-related differences were conserved despite consistently faster growth in OA. RUNX2/SP7 levels and TNAP mRNA and protein activity were, however, greater in trabecular than subchondral and cortical osteoblasts in OA and OP. BSP-II levels were significantly greater in trabecular and lowest in cortical osteoblasts in both OA and OP. In contrast, BGLAP levels showed divergent bone type-selective behaviour; highest in osteoblasts from subchondral origins in OA and trabecular origins in OP. We found virtually identical bone type-related differences, however, in TNFRSF11B:TNFSF11 in OA and OP, consistent with greater potential for paracrine effects on osteoclasts in trabecular osteoblasts. Subchondral osteoblasts (OA) exhibited highest VEGF-A mRNA levels and release. Our data indicate that human osteoblasts in trabecular, subchondral and cortical bone have inherent, programmed diversity, with specific bone type-related differences in growth, differentiation and pro-angiogenic potential in vitro

    Quantitative biometric phenotype analysis in mouse lenses

    Get PDF
    The disrupted morphology of lenses in mouse models for cataracts precludes accurate in vitro assessment of lens growth by weight. To overcome this limitation, we developed morphometric methods to assess defects in eye lens growth and shape in mice expressing the αA-crystallin R49C (αA-R49C) mutation. Our morphometric methods determine quantitative shape and dry weight of the whole lens from histological sections of the lens. This method was then used to quantitatively compare the biometric growth patterns of lenses of different genotypes of mice from birth to 12 months. The wild type dry lens weights determined using the morphometric method were comparable to previously reported weights. Next we applied the method to assessing the lenses of αA-R49C knock-in mice, which exhibit decreased αA-crystallin protein solubility, resulting in a variety of growth abnormalities including early cataract formation, decreased eye and lens size, failure to form the equatorial bow region, and continued lens cell death, sometimes resulting in the entire loss of the lens and eye. Our morphometric methods reproducibly quantified these defects by combining histology, microscopy, and image analysis. The volume measurement accurately represented the total growth of the lens, whereas the geometric shape of the lens more accurately quantified the differences between the growth of the mutant and wild-type lenses. These methods are robust tools for measuring dry lens weight and quantitatively comparing the growth of small lenses that are difficult to weigh accurately such as those from very young mice and mice with developmental lens defects

    Telemedicine coverage for post-operative ICU patients.

    Get PDF
    Introduction There is an increased demand for intensive care unit (ICU) beds. We sought to determine if we could create a safe surge capacity model to increase ICU capacity by treating ICU patients in the post-anaesthesia care unit (PACU) utilizing a collaborative model between an ICU service and a telemedicine service during peak ICU bed demand. Methods We evaluated patients managed by the surgical critical care service in the surgical intensive care unit (SICU) compared to patients managed in the virtual intensive care unit (VICU) located within the PACU. A retrospective review of all patients seen by the surgical critical care service from January 1st 2008 to July 31st 2011 was conducted at an urban, academic, tertiary centre and level 1 trauma centre. Results Compared to the SICU group ( n = 6652), patients in the VICU group ( n = 1037) were slightly older (median age 60 (IQR 47-69) versus 58 (IQR 44-70) years, p = 0.002) and had lower acute physiology and chronic health evaluation (APACHE) II scores (median 10 (IQR 7-14) versus 15 (IQR 11-21), p \u3c 0.001). The average amount of time patients spent in the VICU was 13.7 + /-9.6 hours. In the VICU group, 750 (72%) of patients were able to be transferred directly to the floor; 287 (28%) required subsequent admission to the surgical intensive care unit. All patients in the VICU group were alive upon transfer out of the PACU while mortality in the surgical intensive unit cohort was 5.5%. Discussion A collaborative care model between a surgical critical care service and a telemedicine ICU service may safely provide surge capacity during peak periods of ICU bed demand. The specific patient populations for which this approach is most appropriate merits further investigation

    Gene duplication in an African cichlid adaptive radiation

    Get PDF
    Background Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis “chilingali”) and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). Results Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%–49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. Conclusions These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation

    Modelling and visualisation of material flow in friction stir spot welding

    Get PDF
    The material flow in friction stir spot welding of aluminium to both aluminium and steel has been investigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features, welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet (un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented, which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions. The model and the experimental observations provide a consistent interpretation of the stick-slip conditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling of heat generation in friction stir processing.The authors wish to thank the EPSRC for funding this research through the following grants: Friction Joining – Low Energy Manufacturing for Hybrid Structures in Fuel Efficient Transport Applications (EP/G022402/1 and EP/G022674/1); and LATEST2, Light Alloys Towards Environmentally Sustainable Transport (EP/H020047/1).This is the author accepted manuscript. The final version is available from Elsevier at http://dx.doi.org/10.1016/j.jmatprotec.2015.06.02

    Blood-brain barrier ultrastructural changes in impact acceleration head trauma

    Get PDF
    © 2004 by MEDIMOND The document attached has been archived with permission from the Medimond International Proceedings Division. An external link to the publisher’s web site is included.Mounir Ghabriel, C. Zhu, A. Imran, P. Blumbergs and P. Reillyhttp://www.medimond.com/proceedings/moreinfo/20040912.ht
    corecore