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Rapid Single-Shot Measurement of a Singlet-Triplet Qubit: Supplementary Material
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This supplementary note presents a derivation of an equation that appears in the main text of
the Letter “Rapid Single-Shot Measurement of a Singlet-Triplet Qubit” for the ensemble-averaged
triplet T+ return probability, PT . The equation is used to fit experimental data in Fig. 4(b) of that
Letter. The analysis assumes classical Overhauser fields that are static on the time scale of electron
spin evolution but fluctuate randomly on longer time scales, where ensemble statistics are measured.

In one of the experiments described in the accompanying Letter, “Rapid Single-Shot Measurement of a Singlet-
Triplet Qubit”, two electrons in a double quantum dot are initialized in the singlet state, then brought to the
anticrossing of the lower branch of the hybridized singlet, S, and the m = +1 triplet, T+ = | ↑↑�. The hyperfine
interaction felt by the electrons due to the large number (∼ 106) of nuclei in the host material is treated as an effective
classical Zeeman (Overhauser) field acting on the electrons. The Overhauser field is further assumed to be static on
time scales of the electron dynamics. Near the S − T+ resonance, the difference in transverse components of the
Overhauser fields in the left (L) and right (R) dots, ∆Bx(y) = [BL

x(y)−B
R
x(y)]/2 mix singlet and triplet state, while the

average longitudinal Overhauser field, Bz = [BL
z + B

R
z ]/2, acts as a random energy detuning. An external magnetic

field, B, defines the quantization axis z. This supplementary note presents a derivation of the triplet probability, PT ,
used to fit experimental data in Fig. 4(b), following Ref. [3]. The Hamiltonian in the basis (S, T+) is [1, 2]

H = g
∗
µB

�
−J/(g∗µB) cos θ B+/

√
2

cos θ B−/
√

2 B + Bz

�
, (1)

where cos θ is the (1,1) component of the hybridized singlet ground state, |S� = cos θ |(1, 1)S� + sin θ |(0, 2)S� and
B± = ∆Bx ± i∆By. The effective electron g-factor is g

∗ = −0.44. An additional factor
√

2 in the numerator of
the off-diagonal term stems from constructive interference of two electron spin flip - pathways, since there are two
electrons participating [1]. The exchange, J , the external magnetic field, B, and the nuclear Overhauser z-component,
Bz, are combined to the energy mismatch δ = −g

∗
µB(B +Bz)−J . In the described experiment the exchange is tuned

to resonance, leaving δ = −g
∗
µBBz. For an initial singlet cT (τI = 0) = 0 the solution for the probability amplitude,

cT (τI), is [4]

cT (τI) =
cos θ(∆Bx + i∆By)√

2 �ω/|g∗µB |
sin(ωτI), (2)

with the precession frequency, ω,

ω =
1
2�

�
δ2 + 2 cos2 θ (g∗µB)2(∆B2

x + ∆B2
y) =

|g∗µB |
2�

�
B2

z + 2 cos2 θ (∆B2
x + ∆B2

y). (3)

The nuclear Overhauser field z-component, Bz, and the gradient fields, ∆Bx and ∆By, are not known and
constant, but distributed [1, 2] according to the distribution function ρ(B) = (2πB

nuc)−3/2
e
−(B/(Bnuc))2/2, with

B = (∆Bx,∆By, Bz). The evolution of the nuclear fields is slower than the evolution of the electron spin, hence the
triplet probability for an ensemble of measurements, P

ideal
T (τI), can be written as the integral of all probabilities for

a single constant Overhauser field, weighted by ρ(B),

P
ideal
T (τI) =

�
d
3B ρ(B)cT (τI)c∗T (τI) =

�
d
3B ρ(B)

cos2 θ (∆B
2
x + ∆B

2
y)

2 (�ω/|g∗µB |)2
sin2(ωτI). (4)

The evolution occurs far detuned from the (1,1)-(0,2) charge degeneracy, therefore the hybridized singlet is approxi-
mately identical to the (1,1) singlet, and cos θ ∼ 1. Furthermore allowing an offset, P

0
T , of PT , because of imperfect

preparation or miscounting of singlets as triplets and a smaller than one visiblity, V , yields the equation in the paper:

PT = P
0
T + V

�
d
3B ρ(B)

(∆B
2
x + ∆By)2

2 (�ω/|g∗µB |)2
sin2(ωτI), (5)
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which describes the measured triplet probability, averaged over many singleshot measurements.
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