8,111 research outputs found
Assessment of casting filling by modeling surface entrainment events using CFD
The reliability of cast components is dependent on the quality of the casting process. During this highly transient filling phase the prevention of free surface turbulence and consequential oxide entrainment is critical to ensure the mechanical integrity of the component. Past research has highlighted a number of events that lead to entrainment of surface oxides. Using FLOW-3D, flow structures that result in surface entrainment events have been simulated and an algorithm developed that allows entrainment and defect motion to be tracked. This enables prediction of the quantity and motion of oxide film generated from each event. The algorithm was tested experimentally and compared to experimental data from previously published work. A quantitative criterion is proposed to assess the damage of each type of event. Complete running systems have also been studied to understand how they could be assessed for quality of filling based on the flows within them
The modelling of oxide film entrainment in casting systems using computational modelling
As Campbell stated in 2006, “the use of entrainment models to optimise filling systems designs for castings has huge commercial potential that has so far being neglected by modellers”. In this paper a methodology using computational modelling to define entraining events and track the entrained oxide films is presented. Research has shown that these oxide films present within the casting volume are highly detrimental to casting integrity, thus their entrainment during mould filling is especially undesirable. The method developed for the modelling of oxide entrainment has been validated against previously published data by Green and Campbell (1994) [31]. The validation shows good quantitative correlation with experimental data. However there is scope for further development which has the potential to both improve the accuracy and further validate the technique
Fast Single-Charge Sensing with an rf Quantum Point Contact
We report high-bandwidth charge sensing measurements using a GaAs quantum
point contact embedded in a radio frequency impedance matching circuit
(rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to
charge, we demonstrate a conductance sensitivity of 5x10^(-6) e^(2)/h Hz^(-1/2)
with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron
double quantum dot is investigated in a mode where the rf-QPC back-action is
rapidly switched.Comment: related papers available at http://marcuslab.harvard.ed
Rapid Single-Shot Measurement of a Singlet-Triplet Qubit
We report repeated single-shot measurements of the two-electron spin state in
a GaAs double quantum dot. The readout scheme allows measurement with fidelity
above 90% with a 7 microsecond cycle time. Hyperfine-induced precession between
singlet and triplet states of the two-electron system are directly observed, as
nuclear Overhauser fields are quasi-static on the time scale of the measurement
cycle. Repeated measurements on millisecond to second time scales reveal
evolution of the nuclear environment.Comment: supplemental material at
http://marcuslab.harvard.edu/papers/single_shot_sup.pd
Alternative mathematical programming formulations for FSS synthesis
A variety of mathematical programming models and two solution strategies are suggested for the problem of allocating orbital positions to (synthesizing) satellites in the Fixed Satellite Service. Mixed integer programming and almost linear programming formulations are presented in detail for each of two objectives: (1) positioning satellites as closely as possible to specified desired locations, and (2) minimizing the total length of the geostationary arc allocated to the satellites whose positions are to be determined. Computational results for mixed integer and almost linear programming models, with the objective of positioning satellites as closely as possible to their desired locations, are reported for three six-administration test problems and a thirteen-administration test problem
The role of service areas in the optimization of FSS orbital and frequency assignments
A relationship is derived, on a single-entry interference basis, for the minimum allowable spacing between two satellites as a function of electrical parameters and service-area geometries. For circular beams, universal curves relate the topocentric satellite spacing angle to the service-area separation angle measured at the satellite. The corresponding geocentric spacing depends only weakly on the mean longitude of the two satellites, and this is true also for alliptical antenna beams. As a consequence, if frequency channels are preassigned, the orbital assignment synthesis of a satellite system can be formulated as a mixed-integer programming (MIP) problem or approximated by a linear programming (LP) problem, with the interference protection requirements enforced by constraints while some linear function is optimized. Possible objective-function choices are discussed and explicit formulations are presented for the choice of the sum of the absolute deviations of the orbital locations from some prescribed ideal location set. A test problem is posed consisting of six service areas, each served by one satellite, all using elliptical antenna beams and the same frequency channels. Numerical results are given for the three ideal location prescriptions for both the MIP and LP formulations. The resulting scenarios also satisfy reasonable aggregate interference protection requirements
- …